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A B S T R A C T

Humans have a remarkable ability to learn by watching others, whether learning to tie an elaborate knot or play
the piano. However, the mechanisms that translate visual input into motor skill execution remain unclear. It has
been proposed that common cognitive and neural mechanisms underpin learning motor skills by physical and
observational practice. Here we provide a novel test of the common mechanism hypothesis by testing the extent
to which certain individual differences predict observational as well as physical learning. Participants (N = 92
per group) either physically practiced a five-element key-press sequence or watched videos of similar sequences
before physically performing trained and untrained sequences in a test phase. We also measured cognitive
abilities across participants that have previously been associated with rates of learning, including working
memory and fluid intelligence. Our findings show that individual differences in working memory and fluid
intelligence predict improvements in dissociable aspects of motor learning following physical practice, but not
observational practice. Working memory predicts general learning gains from pre- to post-test that generalise to
untrained sequences, whereas fluid intelligence predicts sequence-specific gains that are tied to trained se-
quences. However, neither working memory nor fluid intelligence predict training gains following observational
learning. Therefore, these results suggest limits to the shared mechanism hypothesis of physical and observa-
tional learning. Indeed, models of observational learning need updating to reflect the extent to which such
learning is based on shared as well as distinct processes compared to physical learning. We suggest that such
differences could reflect the more intentional nature of learning during physical compared to observational
practice, which relies to a greater extent on higher-order cognitive resources such as working memory and fluid
intelligence.

1. Introduction

A remarkable feature of human cognition is the ability to acquire
skills through passive observation. Whether learning to tie shoelaces or
dance “the robot”, one can acquire complex skills by physically prac-
ticing them or by watching others perform them. Recent proposals have
suggested that learning by physical and observational practice relies on
a common set of cognitive and neural mechanisms. To date, however,
research is only beginning to elucidate the ways in which both types of
learning draw upon on shared mechanisms. One way to deepen un-
derstanding of shared mechanisms between physical and visual
learning, which has not been used previously, is through demonstration
of common individual differences that influence both kinds of learning.
Therefore, the current study tested the extent to which individual dif-
ferences in cognitive abilities predict learning following physical and

observational practice.
Common cognitive and neural mechanisms have been previously

associated with action perception and production (Caspers, Zilles,
Laird, & Eickhoff, 2010; Prinz, 1997; Rizzolatti & Sinigaglia, 2010,
2016). Hence, simply watching actions performed by others engages
visuomotor representations, which are also engaged during the per-
formance of similar actions (Gentsch, Weber, Synofzik, Vosgerau, &
Schütz-Bosbach, 2016). In addition, common cognitive and neural
mechanisms have been associated with learning motor skills by physical
and observational forms of practice (Hodges, Williams, Hayes, &
Breslin, 2007; Vogt & Thomaschke, 2007). For example, neuroimaging
studies have shown that similar frontoparietal brain regions are asso-
ciated with physical and observational practice (Cross, Kraemer,
Hamilton, Kelley, & Grafton, 2009; Higuchi, Holle, Roberts, Eickhoff, &
Vogt, 2012; Kirsch & Cross, 2015; Sakreida et al., 2018; Vogt &
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Thomaschke, 2007). Moreover, occupying the motor system with an-
other task (Mattar & Gribble, 2005) and applying neurostimulation to
sensorimotor cortices (Brown, Wilson, & Gribble, 2009; McGregor,
Cashaback, & Gribble, 2016), both impair observational learning. Fi-
nally, behavioural measures of performance have been demonstrated to
be influenced in a similar manner following observational and physical
forms of motor learning (Bird, Osman, Saggerson, & Heyes, 2005;
Blandin, Lhuisset, & Proteau, 1999; Boutin, Fries, Panzer, Shea, &
Blandin, 2010). Together, these studies have provided evidence at both
a cognitive and a neural level that motor skill acquisition via physical
and observational practice partly rely on common mechanisms.

Although evidence suggests that common mechanisms operate in
different forms of motor learning, current understanding of observa-
tional learning remains in its infancy and is therefore guided by a re-
latively impoverished set of neurocognitive models. Such models sti-
pulate that shared processes are likely to be implemented in
frontoparietal brain circuits (Cross et al., 2009; Gardner, Aglinskas, &
Cross, 2017; Higuchi et al., 2012; Lago-Rodríguez & Cheeran, 2014;
Mattar & Gribble, 2005). However, beyond identifying the neural cir-
cuits that are involved, there remains a relatively coarse understanding
of the type of cognitive mechanisms that are shared, due to a lack of
research that characterises the structure of such cognitive systems. As
such, a novel way to study the extent to which motor learning through
physical and observational practice relies on shared cognitive me-
chanisms is to probe learning rates as a function of common individual
differences. In the context of motor learning, studies have investigated
individual differences following physical practice (Ackerman &
Cianciolo, 2000; Ackerman, 1988), but to our knowledge, no studies
have investigated individual differences in motor learning through
observational practice. Therefore, the extent to which common cogni-
tive abilities predict performance during both types of learning is cur-
rently unclear. By focussing on individual differences, we are able to
develop a deeper understanding of the structure of the cognitive sys-
tems that are involved in observational learning, as well as the extent to
which these systems operate in the same manner when acquiring motor
skills through physical learning.

Individual difference research in the context of learning has a long
history due to its potential to inform instruction in educational settings
(Gagne, 1967; Jonassen & Grabowski, 2012). General cognitive abil-
ities, such as working memory and fluid intelligence, have long been
studied in relation to learning. Working memory has been characterised
as temporary storage and manipulation of information relevant for
performance in cognitive tasks (Baddeley, 1992). In contrast, fluid in-
telligence refers to an ability to reason and is typically measured using
tasks that require the solving of novel problems (Cattell, 1971; Horn,
1976). Although correlated, it has been demonstrated that working
memory and fluid intelligence are partly dissociable constructs and may
be associated with different components of learning (Ackerman, Beier,
& Boyle, 2005; Kane, Hambrick, & Conway, 2005; Shipstead, Harrison,
& Engle, 2016). For example, using a rule-learning task, fluid in-
telligence has been shown to predict learning and retrieval processes
above and beyond working memory (Wang, Ren, & Schweizer, 2017).

In terms of motor learning through physical practice, evidence to
date suggests that working memory predicts future gains in skill ac-
quisition (Bo & Seidler, 2009; Unsworth & Engle, 2005). For example,
using a motor sequence learning task, Bo and Seidler (2009) demon-
strated that greater working memory capacity was associated with the
ability to “chunk” sequences into longer components and faster rates of
learning. However, it is unclear if working memory and fluid in-
telligence predict dissociable components of motor learning in a similar
manner to other forms of rule-based learning (Wang et al., 2017). In-
deed, if motor learning follows findings from prior rule-based learning
studies of individual differences (Wang et al., 2017), working memory
and fluid intelligence should have dissociable influences on perfor-
mance. Working memory should be associated with more general di-
mensions of learning, such as task preparation and attention, whereas

fluid intelligence should be associated with cognitive operations that
are tied to action sequences more specifically, such as memory retrieval
and specification of sequence-specific information. The current study
design enables the distinction between general learning and sequence-
specific learning by employing a pre- and post-test, as well as focusing
on performance of trained and untrained sequences. That is, sequence-
specific learning is indexed by differences between trained and un-
trained sequences at post-test, whereas general learning is indexed by
improvements from pre- to post-test that generalise to untrained se-
quences.

In contrast to physical practice, no research to date has investigated
how cognitive abilities such as working memory and fluid intelligence
relate to skill development through observational practice. Although
the characteristics of the observer have been argued to influence the
extent to which observational learning occurs (Bandura & Walters,
1963), very little is known about individual differences in learning
through observational practice. Indeed, there is some suggestive evi-
dence that individual differences in observational learning operate in
educational settings (Koran, Snow, & McDonald, 1971), but no research
in the domain of motor learning through observation has examined
these questions directly.

The aim of the current study is to bridge this gap by investigating
motor learning through physical and observational practice by studying
individual differences. Support for a common process account of motor
learning would be provided if working memory and fluid intelligence
similarly predict learning gains following physical and observational
practice. In contrast, limits to the common process account would be
revealed if distinctly different patterns emerge in terms of the re-
lationship between cognitive abilities and learning following physical
and observational practice. Support for either model of underlying
processes, however, would enrich current understanding of the cogni-
tive basis of observational learning and the extent to which shared
mechanisms operate in distinct learning contexts.

In addition to testing these primary research questions, which had
clearly developed hypotheses, we also designed the study to enable a
set of exploratory analyses to be performed. The exploratory part of the
study focussed on understanding the relationships between components
of personality and learning through physical and observational
learning. That is, we were interested in exploring the degree to which
personality measures such as empathy, interdependence, narcissism
and Big-Five personality dimensions would predict learning rates, as it
is conceivable that the degree to which individuals are broadly self or
other focussed may impact skill acquisition in the learning contexts
under investigation. For example, one may expect that personality
profiles with a greater focus on others, such as higher empathy, higher
interdependence, and lower narcissism, may learn more from others
during observational learning. In contrast, individuals with a person-
ality profile with a greater self-focus may benefit learning through
physical more than observational practice.

2. Method

Consistent with recent proposals (Simmons, Nelson, & Simonsohn,
2011, 2012), we report how we determined our sample size, all data
exclusions (if any), all manipulations, and all measures in the study. In
addition, following open science initiatives (Munafò et al., 2017), the
data, stimuli and analysis code associated with this study are freely
available online (osf.io/n8sqv/). By making the data available, we en-
able others to pursue tests of alternative hypotheses, as well as more
exploratory analyses

2.1. Participants

We determined our sample size by terminating data collection once
we had collected over at least 100 participant datasets per group as this
permitted sensitivity to detect at least small-to-medium effects (for
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details on our power analyses, see the Hypothesis testing section below).
Two hundred and twenty-three Bangor University student volunteers
took part in the study: 69 males and 154 females, 18–37 years old
(M = 19.96 years, SD = 3.09). All but one participant were right-
handed (based on self-report). The left-handed participant was ex-
cluded from the sample. Data of additional 38 participants were also
excluded for reasons provided below (see Data processing). The final
sample comprised 184 participants. Participants were randomly as-
signed to physical (N = 92) or observational (N = 92) practice groups.
There were no significant differences between the two groups in terms
of demographics and baseline performance (Table 1). Participants
provided their written informed consent prior to beginning all experi-
mental procedures. Participation was rewarded with course credits or
£10. The study was conducted in accordance with the Declaration of
Helsinki and all procedures were approved by the Ethics Committee of
the School of Psychology at Bangor University (approval number: 2014-
11824) and the UK Ministry of Defence Research Ethics Committee
(approval number: 524/MODREC/14).

2.2. Measures of individual differences

2.2.1. Fluid intelligence
Fluid intelligence was assessed by a total score of the Analogies, the

Number series and the Matrices subtests of The
Intelligenz–Struktur–Test 2000R (Amthauer, Brocke, Liepmann, &
Beauducel, 2001), as applied before by Beauducel, Brocke, and
Liepmann (2001). A computerised version of the subtests was created in
MATLAB 8.3.0 (The MathWorks, MA, USA), closely mimicking the
paper version of the tests.

The Analogies subtest measures the ability to reason and see re-
lationships between words. For example, presented with question ‘dark
: light = wet : ?’ and a list of five possible answers ‘rain’, ‘day’, ‘damp’,
‘wind’, ‘dry’, participants would select one that completes the given
analogy. In this example, the correct choice would be ‘dry’, because
‘dry’ is the opposite of ‘wet’, as ‘light’ is the opposite of ‘dark’.

The Number series subtest assesses numeric reasoning ability.
Participants are asked to find the number that is next in the line of a
given numerical sequence that is built up according to a specific rule.
For example, given a sequence ‘2 4 6 8 10 12 14 ?’, participants would

need to infer that in this sequence every number that follows is by two
greater than the one before, as such, the next number that follows
would be 16.

The Matrices subtest assesses abstract, figural reasoning ability.
Participants are presented with three matrices with different shapes or
content. The task is to identify a specific pattern which links the three
matrices and from a set of five alternatives to choose the fourth matrix
which follows the same common pattern. Each of the three subtests
contains 20 items and participants have to complete as many items as
possible in the given time limit (7 min for Analogies and 10 min for the
Number series and for the Matrices). Participants were awarded 1 point
for each correct answer and the results of the three subtests were
summed together to obtain the fluid intelligence score.

2.2.2. Working memory
Working memory was assessed by a computerised version of the

spatial short-term memory test, implemented and validated by
Lewandowsky, Oberauer, Yang, and Ecker (2010). Although there are
many different types of working memory task, we chose one that was
primarily visuospatial to be consistent with the main task, which has
primarily visuospatial features. In brief, participants had to remember
spatial relations between dots in a 10 × 10 grid. Two to six dots were
presented, one by one, for 900 ms each, with an intertrial interval of
100 ms. After all of the dots were shown, participants were asked to
remember the presented pattern of dots by clicking the cells in an
empty grid. The order and the absolute position of the dots were irre-
levant, only the overall pattern had to be recalled. There were 30 trials
in total, 6 at each set size. The order of trials and dot sequences was the
same for all participants.

The working memory score was calculated based on the similarity
between the presented and recalled patterns (Lewandowsky et al.,
2010). For each dot, two points were awarded if participants clicked on
the exact location, one point was awarded if they clicked within one
grid place from the exact location, and zero points were awarded if they
clicked more than one grid place from the exact location. The total
score was the sum of all scores on all trials with the maximum possible
score being 240.

2.2.3. Personality questionnaires
To support exploratory analyses, we used multifaceted empathy,

interdependence, narcissism and Big-Five personality measures to as-
sess individuals’ self-other relations and broad personality character-
istics. Empathy scores were acquired using the interpersonal reactivity
index questionnaire (IRI; Davis, 1980, 1983). The IRI is a 28-item
measure of four empathy dimensions: perspective taking (adopting
other’s point of view), fantasy (self-identification with fictional char-
acters), empathic concern (compassion and concern for others), and
personal distress (distress when seeing another’s negative experience).
Interdependence was assessed by a 24-item Self-Construal scale
(Singelis, 1994). The scale measures both interdependence and in-
dependence, but in the analysis, we focused only on the inter-
dependence measure. Trait narcissism was measured by a 40-item
Narcissistic personality inventory (NPI; Raskin & Terry, 1988). Broad
personality characteristics were assessed by a 44-item Big-Five in-
ventory (John, Donahue, & Kentle, 1991; John, Naumann, & Soto,
2008) measuring five domains of personality: openness to experience,
conscientiousness, extraversion, agreeableness, and neuroticism. All
four questionnaires were created in MATLAB and required forced-
choice responses.

2.3. Stimuli

A keypress sequence-learning paradigm was used, which the au-
thors have used previously with neurostimulation and neuroimaging
methods (Apšvalka, Cross, & Ramsey, 2018; Apšvalka, Ramsey, & Cross,
2018). The paradigm was based on the task used by Wiestler and

Table 1
Participant characteristics.

Physical practice
(N = 92)

Observational
practice (N = 92)

Group
difference
(p-value)

Demographics
Gender

(male:female)
30:62 30:62 1

Age (years; M ± SD 19.68 ± 2.32 19.70 ± 2.62 0.976
English 1st language

(yes:no)
76:16 80:12 0.538

Baseline performance (M ± SD)
Pre- Execution time

(s)
2.16 ± 0.78 2.00 ± 0.57 0.113

Personality measures (M ± SD)
Working memory 196.13 ± 15.75 195.18 ± 15.17 0.679
Fluid intelligence 31.03 ± 8.01 31.78 ± 7.22 0.506
Extraversion 3.32 ± 0.78 3.2 ± 0.73 0.227
Agreeableness 3.76 ± 0.67 3.77 ± 0.6 0.915
Conscientiousness 3.23 ± 0.55 3.29 ± 0.65 0.668
Neuroticism 3.14 ± 0.8 3.24 ± 0.84 0.487
Openness 3.4 ± 0.6 3.46 ± 0.59 0.359
Perspective taking 18.88 ± 4.47 17.96 ± 5.35 0.371
Fantasy 18.67 ± 6.01 18.74 ± 6.08 0.992
Emotional concern 19.03 ± 4.56 19.35 ± 5.34 0.426
Personal distress 12.36 ± 4.8 12.7 ± 5.23 0.616
Narcissism 12.41 ± 6.27 11.6 ± 6.88 0.261
Interdependence 43.3 ± 5.83 43.03 ± 6.9 0.917
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Diedrichsen (2013). A standard QWERTY black computer keyboard had
the Q, 3, 4, 5, and Y keys covered with red tape and all surrounding
keys removed. In pre- and post-training sessions, participants were re-
quired to press the red keys with the five fingers of their left hand in a
specified order. During the observational training, participants watched
videos of the experimenter performing the keypress task. For the video
recordings, a similar keyboard was used with the only difference that
the sides of the five keys were covered in yellow to improve the visi-
bility of the key being pressed. Stimuli presentations and response re-
cordings were performed using MATLAB 8.3.0 (The MathWorks, MA,
USA) and Psychophysics Toolbox 3.0.12 (Brainard, 1997).

Keypress sequences The same set of 12 five-element keypress se-
quences was used previously by Wiestler and Diedrichsen (2013). Each
sequence required the five fingers of the left hand to press once, but in a
different order and with no more than three adjacent finger-presses in a
row. All sequences were matched for difficulty as demonstrated by prior
work (Wiestler & Diedrichsen, 2013).

2.3.1. Videos
For observational training, 13-second videos were created showing

the experimenter’s left hand from a first-person perspective, slightly
tilted to the right (Fig. 1B). Each video showed the experimenter ex-
ecuting one sequence five times, with naturally varying breaks between
each sequence repetition, to ensure a more authentic presentation of
the performance. That is, we tried to make the videos mimic natural
motor performance as much as possible, so that the experience of
physically practicing and observationally practicing were as similar as
possible. For the same reason, for each sequence, five different video
versions were recorded, to allow closer to natural performance varia-
tion of the same sequence. An additional video version for each se-
quence was created where one of the five sequence executions was
incorrect. This resulted in 72 videos in total.

Sequences were executed at an intermediate baseline performance
level, determined by behavioural pilot test results, where the average
correct sequence execution at baseline was 2.29 s (N = 17, M = 2.29 s,
SE = 0.14). Each original video, showing five repetitions of the same
sequence, was slightly speeded up or slowed down ( ± 10%) to make it
exactly 13 s long. Consequently, some authenticity was lost; however,
the relative variability within the video remained intact, and the
average single sequence execution in the videos was 2.3 s. The videos
were presented on a computer monitor in full colour on a black back-
ground. The frame rate was 29 frames per second with a resolution of
600 × 526 pixels, showing approximately natural hand size.

2.3.2. Sequence execution trial
A sequence execution trial involved five continuous repetitions of

the same sequence (Fig. 1A). Participants were instructed to execute
sequences as quickly and as accurately as possible. Each trial started
with a 5-digit cue (for 2.7 s), indicating the sequence of keypresses. All
trial-related information was presented centrally at the bottom of the
screen against a grey background. A trial started with a black fixation
cross (0.2 s), followed by the sequence cue presented as five digits
(2.7 s) that indicated from right to left which key to press: “1” – the
right-most key pressed with the thumb; “5” – the left-most key pressed
with the little finger. After the cue, the digits were replaced by the
fixation cross and five black asterisks above it. This served as a “go”
signal to execute the memorised sequence five times as quickly and
accurately as possible. If the correct key was pressed, the corresponding
asterisk on the screen turned green, if a wrong key was pressed, the
asterisk turned red.

After executing a single sequence, the central fixation cross changed
colour giving feedback on the performance (0.8 s): green – correct se-
quence execution; red – incorrect sequence execution; blue – correct,
but executed 20% slower than the median execution time in the pre-
vious trials; three green asterisks – correct and executed 20% faster
than the median execution time in the previous trials. We chose to

include feedback in this manner, in order to compare with the physical
practice study that the current approach was based upon (Wiestler &
Diedrichsen, 2013). After this short feedback, all asterisks turned black
signalling the start of the next execution trial. After five executions of
the same sequence, the trial ended, and the next sequence was cued.

2.3.3. Sequence observation trial
A sequence observation trial involved watching a video clip of an

actor’s left hand performing five continuous repetitions of the same
sequence (Fig. 1B). A trial started with a 5-digit cue (for 2.6 s1), in-
dicating the sequence to be executed, followed by a video (13 s)
showing five executions of the cued sequence. Participants were in-
structed that they would see videos of a hand executing finger-press
sequences and that they should watch and learn the sequences because
they will have to perform the sequences at the end of the experiment.
Participants were also instructed to watch whether the hand executed
the correct (cued) sequence all five times because, occasionally, they
would be asked to verify whether any errors were made. After some of
the trials, participants were asked whether there was an error in any of
the five executions – the error question. Participants responded to the
error question by pressing a ‘b’ key (marked red) for ‘yes’ and an ‘m’ key
(marked blue) for ‘no’. This task was included to ensure that partici-
pants paid attention to the videos. Participants were also informed that
they will need to perform the watched sequences again at the end of the
experiment.

2.4. Procedure

On arrival, participants were randomly assigned to physical (PP) or
observational (OP) practice groups. For each participant, from the set of
12 sequences, one sequence was randomly allocated to aid familiar-
isation with the task, two other sequences to the Trained condition, and
two more to the Untrained condition. The remaining sequences were
unused. The task required learning two keypress sequences with the left
(non-dominant) hand either by a physical practice (PP group) or by
watching videos of an actor executing the sequences (OP group).

Familiarisation involved three single sequence execution trials to
ensure participants understood the task. One trial consisted of five
continuous repetitions of the same sequence. In the pre- and post-
training sessions participants executed the two trained and two un-
trained sequence trials (one trial per sequence) in a random order.
During training, participants practised two sequences by either per-
forming (PP group) or watching (OP group) 36 trials of each sequence.
The training session was divided into four sub-sessions. Each sub-ses-
sion consisted of 9 trials per sequence. For the OP group, one of the 9
trials was an ‘error trial’ – a video showing at least one incorrect se-
quence execution. In each sub-session, the error question was asked
randomly 5–7 times. The error question was included to assess the
extent that participants were paying attention to the sequence in-
formation in the videos. Attention to the observed videos was assessed
as a percentage of accurate responses to the error question.

The whole testing procedure lasted approximately two hours and
consisted of the following steps: information, consent and instructions;
Matrices test; motor task familiarisation; pre-test; 9 blocks of training;
Big Five inventory; 9 blocks of training; IRI questionnaire; 9 blocks of
training; NPI questionnaire; 9 blocks of training; Self-Construal scale
questionnaire; post-test; Analogies test; Numbers test; spatial short-term
memory test; debrief.

1 The duration should have been modified to 2.7 s to match the duration
during execution trials. 2.6 s was the duration used in an fMRI study using the
same task (Apšvalka et al., 2018) and we failed to update the timing. We do not
feel, however, that such a small discrepancy between conditions will make a
meaningful difference to the overall pattern of results.
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2.5. Data analysis

All statistical analyses were performed using R (v3.3.2, 2016-10-31)
in RStudio (v1.0.136, 2016-12-21, RStudio, Inc, Boston, MA). The sig-
nificance threshold for all statistical comparisons was p < 0.05. All
sample means are reported with their 95% confidence intervals in
square brackets. Confidence intervals were calculated as SE*1.99, for
91 degrees of freedom.

2.6. Measures of training effects on sequence learning

Participants’ physical performance was assessed at pre- and post-
test, measuring the average sequence execution time of the two trained
(to-be-trained) and the two untrained sequences. Therefore, the average
execution time was calculated across two sets of trials that each in-
volved 5 repetitions of each sequence. The sequence execution time was
measured as the duration between the first and the fifth keypresses.
Incorrectly executed sequences were excluded from further analysis.

The effect of training on sequence-specific learning was assessed as
a post-training percentage difference between the trained and un-
trained sequence execution times accounting for possible pre-training
percentage differences between the sequences. The effect of training on
sequence-specific learning was calculated according to Equation 1
below.

=Equation post ET
post ET

pre ET
pre ET

1 100 Untrained

Trained

Untrained

Trained

The effect of training on general learning was measured as pre to
post percentage difference of the untrained sequence execution times
according to Equation 2 below. We chose to measure general skill
learning in this manner, in order to compare with the physical practice
study that the current approach was based upon (Wiestler &
Diedrichsen, 2013).

=Equation
pre ET
post ET

2 100 1Untrained

Untrained

Effect sizes for learning gains were reported in units of % increase as
well as in standardised form as Cohen’s d or dz, depending on whether
the effect is a difference between groups (i.e., PP vs. OP) or a difference
between conditions within the same participants (i.e., trained vs. un-
trained) (Lakens, 2013).

2.7. Data processing

One participant who reported being left-handed and eighteen par-
ticipants who did not correctly execute any trials in one (or more) of the
four conditions (pre-Trained, pre-Untrained, post-Trained, post-
Untrained) were excluded from the analysis. More specifically, OP
participants were excluded only due to pre-training errors. Two PP
participants were excluded because at post-training they did not exe-
cute any of the untrained sequences correctly. One PP participant at
post-training didn’t execute any of the trained sequences correctly and
one PP participant at post-test didn’t execute any of the sequences
correctly. Other excluded PP participants at pre-test didn’t execute any
of the to-be-trained or remain-untrained sequences correctly.

Additionally, twelve participants from the OP group were excluded
due to more than a 50% error rate in response to the ‘error question’ in
the second, third or fourth training sub-session. The exclusion was
based on the assumption that the first sub-session entailed familiar-
isation with the task and having more than 50% error rate on the fol-
lowing sub-sessions would indicate a lack of attention to the observed
videos, thus potentially compromising a practice effect.

From the remaining sample, eight participants were excluded as
pre-test outliers. The outliers were defined as pre-Trained or pre-
Untrained execution time values that were more than two times the
interquartile range above the third quartile or below the first quartile.
Of the remaining 184 participants, the mean-average incorrect trial
removal rate across pre-test and post-test was 23.02% (SD = 12.59).

2.8. Hypothesis testing

Our main hypothesis was that fluid intelligence and working
memory would predict sequence-specific training effects for both PP
and OP groups. In addition, given the different processes that may
underpin sequence-specific and general learning (Janacsek & Nemeth,
2013; Wong, Lindquist, Haith, & Krakauer, 2015), fluid intelligence and
working memory may have dissociable effects on general compared to
sequence-specific learning. Therefore, we also tested the extent to
which fluid intelligence and working memory made dissociable con-
tributions to sequence-specific and general learning. We used multiple
regression to test these hypotheses. PP and OP groups were analysed
separately and all variables were converted to within-group z-scores.
The benefit of scaling in this manner prior to analysis is that it makes it
easier to interpret the data as it returns standardized beta coefficients.
However, we also ran our primary analyses without converting the data

Fig. 1. Trial structures for sequence execution and sequence observation. (A) Sequence execution trial example. A cued sequence had to be memorised and then
executed five times while receiving performance feedback. (B) Sequence observation trial example. A sequence cue was followed by a video showing a hand
executing the sequence five times, either correctly or incorrectly. Occasionally a question was asked whether there was an error in any of the five repetitions, and a
response had to be made.

D. Apšvalka, et al. Cognition 190 (2019) 170–183

174



to z-scores and the results remained the same.
The regression models consisted of the training effect as the de-

pendent measure and three predictor variables: baseline performance
(an inverse of the pre-training average of trained and untrained se-
quence execution times; shorter execution time equates to higher per-
formance), as well as fluid intelligence and working memory scores.
The baseline performance was included as a predictor because partici-
pants who are already skilled at the task may have little benefit from
the training compared to participants with poorer initial skills
(Alexander & Smales, 1997).

In terms of sensitivity to detect these primary effects, given the
sample size of 92 participants in each group, we had 80% power to
detect effects that are conventionally considered small to medium
(f2 = 0.12; Cohen, 1988). Effect size sensitivity was estimated with a
pwr.f2.test function in R for a linear regression model with three pre-
dictor variables and sample size 92.

In addition to these tests of our main hypotheses, we also performed
an exploratory analysis, which investigated whether personality traits
further explain the variance of the training effect (Supplementary
Materials).

3. Results

Sequence execution times at pre-test, post-test and during practice
sessions are illustrated in Fig. 2. Training gains across each group, as
well as for individual participants, are illustrated in Fig. 3. In addition,
we use scatter plots to illustrate the raw data for relationships across
participants between learning rates and our key individual differences
measures (Fig. 4). Key statistics from our regression models are re-
ported in Tables 2 and 3 and visualised in Fig. 5.

3.1. Group characteristics

The PP and OP groups were compared using a Chi-square test on the
proportion of males and females as well as the number of native English
speakers. Participants’ baseline performance, working memory and
fluid intelligence scores were compared using an independent measures
t-test. Personality questionnaire scores were compared using Mann-

Whitney U tests. There were no significant differences between the two
groups in terms of demographics, baseline performance or personality
measures (Table 1).

3.2. Training effects on sequence learning

3.2.1. Sequence-specific learning
Both PP (M = 68% [58%, 78%], t91 = 13.44, p < 0.0001,

dz = 1.40) and OP (M = 10% [4%, 16%], t91 = 3.32, p = 0.0013,
dz = 0.35) groups showed significant training effects on sequence-spe-
cific learning (Fig. 3A). According to Cohen’s benchmark criteria for
interpreting effect sizes (Cohen, 1992), the effect size for the PP group
is conventionally considered large or very large, whereas the effect size

Fig. 2. Sequence execution time at pre-test, post-test and during practice sessions across observational and physical practice groups. As two sequences were allocated
to each condition (trained and untrained), two data points are plotted per condition at pre-test and post-test. Similarly, during practice sessions, the physical practice
group practised two sequences (note: the observational practice group did not physically practice, which is why no training data are reported for that group during
training). Practice was divided into four sub-sessions (displayed as Run 1–4). Each sub-session consisted of nine trials per sequence (which produced 18 trials per sub-
session in total) and a single trial comprised five consecutive executions of a sequence. Sequence execution time during practice was measured as an average of
correct sequence executions within the trial. As such, if all five executions were performed incorrectly, the trial was not included in the plot. Therefore, the number of
participants who contribute to each trial varies slightly from trial to trial (range 88–92; from a total of 92 participants in the physical practice group). Error bars
represent within-participant 95% confidence intervals. Abbreviations: Tr. = trained; Untr. = untrained.

Fig. 3. Training effects on sequence-specific (A) and general skill (B) learning
for the observational practice (grey) and physical practice (orange) groups.
Large dots: group averages and 95% CI; small dots: individual participant va-
lues;** p < 0.01, **** p < 0.0001. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 4. Scatter plots and marginal distribution densities showing sequence-specific (A) and general skill (B) learning versus baseline performance, fluid intelligence
and working memory for observational practice (grey) and physical practice (orange) groups. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 2
Regression analysis summary of sequence-specific learning.

Physical practice Observational practice

Model F3,88 = 4.47, p = 0.006, R2 = 0.132 F3,88 = 0.21, p = 0.886, R2 = 0.007

Coefficients β [95% CI] t p β [95% CI] t p

Intercept 0 0 1 0 0 1
Baseline performance −0.203 [−0.456, 0.050] −1.601 0.112 0.076 [−0.161, 0.313] 0.637 0.526
Fluid intelligence 0.373 [0.149 0.597] 3.312 0.001 0.026 [ −0.227, 0.278] 0.202 0.841
Working memory −0.165 [−0.419, 0.089] −1.291 0.200 −0.053 [-0.292, 0.185] −0.446 0.657
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for the OP group was small to medium in size. Moreover, the training
effect was considerably larger for the PP than the OP group (M = 58%
[46%, 70%], t149.31 = 9.80, p < 0.0001, d = 1.60).

3.2.2. General learning
A post-training improvement of performance on untrained se-

quences, which reflects general skill learning, was expected at the
group-level based on prior research using these sequence-learning de-
signs (Janacsek & Nemeth, 2013; Meier & Cock, 2014). Both PP
(M = 44% [36%, 61%], t91 = 11.41, p < 0.0001, dz = 1.19) and OP
(M = 23% [18%, 29%], t91 = 8.35, p = 0.0013, dz = 0.87) groups
showed significant effects on general skill learning (Fig. 3B). According
to Cohen’s benchmark criteria for interpreting effect sizes (Cohen,
1992), the effect size for both groups is conventionally considered large
or very large. The training effect was larger for the PP than the OP
group (M = 21% [30%, 11%], t165.33 = 4.38, p < 0.0001, d = 0.68).

The way we chose to measure general skill learning, which was
based on prior work using a similar paradigm (Wiestler & Diedrichsen,
2013), means that although the overall sequences that were trained
differed from those that were untrained, there could be subcomponent
transitions that are shared. For example, pairs or triplets of finger
presses could be common between some trained and untrained se-
quences. It is possible, therefore, that training on some of these sub-
sequences could spill over into the untrained performance measures
and contribute in part to performance gains in general learning.

However, we are not concerned about this possibility for two rea-
sons. First, overlap is relatively small, on average. The number of
overlapping triplets between trained and untrained sequences was:

M = 4%, SD = 11%, range [0%, 50%]. Furthermore, a minority of
participants − 29 participants out of 184 (16%) – had at least one
overlapping triplet. The number of overlapping doubles between
trained and untrained sequences was: M = 28%, SD = 17%, range [0%,
75%]. In this case, a majority of participants − 168 participants out of
184 (91%) – had at least one overlapping double. Second, if we remove
participants with at least one overlapping triplet or 50% or more
overlapping doubles, the results from our analyses of general skill
learning remain unchanged. This includes pre to post differences in
performance, as well as individual difference analyses. Therefore, our
primary findings regarding general skill learning remain unchanged if
only participants with a minority of shared transitions are included.

3.2.3. Exploratory observation: Negative learning
Although on average, across both practice groups, practice did lead

to improvements in behavioural performance, we note that there are a
minority of individuals that show negative learning indexes (i.e., per-
formance deteriorates with practice; see Fig. 3). Such findings are not
straightforward to interpret because most prior work only reports
summary statistics for the group as a whole. Indeed, a strength of the
current analysis is that the observation of individuals with negative
learning profiles was made possible by plotting a data point for each
participant in addition to summary statistics for the group as a whole.

Since we do not know how to interpret negative learning or explain
why a minority show it, to aid future research here we report the
proportion of individuals showing negative learning and offer some
speculative considerations. Of the 92 OP participants, 31 (34%) ex-
hibited negative sequence-specific learning, and 15 (16%) exhibited

Table 3
Regression analysis summary of general skill learning.

Physical practice Observational practice

Model F3,88 = 6.386, p = 0.0006, R2 = 0.179 F3,88 = 6.582, p = 0.0005, R2 = 0.183

Coefficients β [95% CI] t p β [95% CI] t p

Intercept 0 0 1 0 0 1
Baseline perf. −0.514 [−0.760, −0.268] −4.158 0.00007 −0.434 [−0.650, −0.219] −4.02 0.0001
Fluid intelligence −0.268 [−0.245, 0.191] −0.245 0.807 0.082 [−0.147, 0.311] 0.715 0.476
Working memory 0.384 [0.137, 0.631] 3.089 0.003 −0.072 [−0.288, 0.144] −0.664 0.508

Fig. 5. Illustration of regression analyses for physical and observational practice groups. For each group (physical practice and observational practice), the figure
shows standardised beta estimates of how baseline performance, fluid intelligence and working memory predict the sequence-specific and general skill learning. In
addition, the figure shows the predictor intercorrelation coefficients and outcome intercorrelation coefficients. Green: positive, red: negative, fading reflects sig-
nificance. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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negative general skill learning. No participants exhibited both types of
negative learning, which is consistent with the negative relationship
that we report in Section 3.3.2 between sequence-specific and general
learning rates. Of the 92 PP participants, 4 (4%) exhibited negative
sequence-specific learning, and 7 (8%) exhibited negative general skill
learning. We suggest that for the PP group, this is rather negligible. But
in the OP group, it is larger and warrants further discussion. It is pos-
sible that the observational practice participants in our study were not
sufficiently challenged by the comparatively slow model performer
they observed during practice. Indeed, fast performers may have
learned from the slow model to slow down their performance – that is,
they learned via observation, but learned to match the model rather
than learning to get faster than the model. To support this speculation,
most of the negative learners at pre-test performed better than the
model. Specifically, in the OP group, 67 of the 92 participants at pre-
test performed better than the model on average (avg. ET < 2.29 s). Of
those 67, 27 exhibited negative sequence-specific learning and 14 ex-
hibited negative general learning. Again, we offer caution when inter-
preting negative learning and hope that future research can probe what
might be an interesting avenue for individual difference research to
pursue.

3.3. Fluid intelligence and working memory as predictors of learning

3.3.1. Sequence-specific learning
We used multiple regression analysis to test whether fluid in-

telligence and working memory predict the sequence-specific training
effect. The baseline performance (an inverse of the pre-training average
of trained and untrained sequence execution times) was also included in
the model to control for the baseline performance differences, which
may contribute to the training effect. All three predictor variables were
intercorrelated but not so highly as to suggest multicollinearity (e.g.,
r > 0.80). Fluid intelligence and working memory were positively
correlated (r = 0.432, p < 0.001), and both fluid intelligence
(r = 0.423, p < 0.001) and working memory (r = 0.465, p < 0.001)
were positively correlated with the baseline performance.

The model that included the three predictor variables significantly
explained sequence-specific training effect variance in the PP group
(Table 2; Fig. 5). However, fluid intelligence was the only individually
significant predictor. When controlling for baseline performance and
working memory capacity, fluid intelligence explained 14% of the
training effect variance, such that higher fluid intelligence was asso-
ciated with greater training gains (Table 2; Fig. 5). The effect sizes for
baseline performance (4%) and working memory (3%) were much
smaller and did not pass our threshold for statistical significance.
Fig. 4A illustrates the raw data in scatter plots.

To check that the component correlation pairs in our model were
not unduly driven by outliers in the data, we also performed robust
correlations using the robust correlation toolbox (Pernet, Wilcox, &
Rousselet, 2013). To do so, we ran Pearson Skipped correlations be-
tween our three predictor variables and the results remained the same,
such that they were all positively correlated. In addition, we computed
the same Pearson Skipped correlation between fluid intelligence and
sequence-specific learning, and this also remained positively correlated
(r = 0.23, 95%CI [0.05, 0.40]). Therefore, these results suggest that the
component correlations within our model are robust in the sense that
they are not unduly influenced by outliers.

Contrary to our predictions, none of our three key predictor vari-
ables explained variance in sequence-specific training effects in the OP
group (Table 2; Fig. 5). Moreover, in terms of effect sizes and interval
estimates, all three predictors explained less than 1% of the variance in
sequence-specific training gains and their 95% confidences intervals
were squarely overlapping with zero, which is suggestive of no effect.
Thus, as illustrated in Fig. 5, fluid intelligence and working memory
were not associated with a higher sequence-specific training effect
following OP. Fig. 4A illustrates the raw data in scatter plots.

3.3.2. General skill learning
The three-predictor model significantly explained general skill

learning variance in both PP and OP groups (Table 3; Fig. 5). In the PP
group, lower baseline performance and higher working memory sig-
nificantly predicted a higher training effect on general skill learning
(26% and 15% respectively). Pearson Skipped correlations showed that
the relationship between baseline performance and general skill
learning was significant and robust (r = −0.24, 95%CI [−0.42,
−0.03]), but the relationship between working memory and general
skill learning was not significant and less robust (r = −0.11, 95%CI
[−0.31, 0.092]). Of course, the zero-order correlation between
working memory and general skill learning does not include baseline
performance as it does in the model presented above. By contrast, fluid
intelligence predicted a smaller proportion of general skill learning
(7%). Further, fluid intelligence was not a significant predictor of
general skill learning and the confidence intervals squarely overlapped
with zero.

Also, in the OP group, lower baseline performance (19%) predicted
higher general skill learning (Table 3; Fig. 5). Neither fluid intelligence
nor working memory were significant predictors of general skill
learning following OP with each predictor explaining less than 1% of
the variance and 95% confidence intervals overlapping with zero.
Fig. 4B illustrates the relevant raw data in scatter plots.

An integrated visualisation of relationships among the involved
measures is presented in Fig. 5. For each group, in addition to the
standardised beta estimates of the two regression models, the figure
shows positive correlations among the three predictor variables and a
negative correlation between the general skill learning and sequence-
specific learning. Overall, fluid intelligence and working memory were
significant predictors of different components of the physical practice
effects, but none of the variables predicted observational practice ef-
fects. Of course, it is worth acknowledging that under a null hypothesis
significance testing statistical framework, failure to reject the null hy-
pothesis is not the same as supporting the null hypothesis. Therefore,
whilst our best current estimate based on point and interval estimates is
that observational learning rates do not vary as a function of our key
predictors, we cannot provide formal support for the null. Instead,
based on our power analysis, we can be reasonably confident that
should an effect at least as large as f2 = 0.12 exist, we would have been
able to detect it in the current study. As such, we can conclude that any
effect of working memory or fluid intelligence on observational
learning is likely to be near zero or negligible in size.

3.4. Fluid intelligence and working memory as predictors of task-focussed
learning

It is important to emphasise that during practice sessions the OP
group had two parallel tasks: learn the motor sequence and detect er-
rors in the observed model’s performance. However, during observa-
tional practice sessions, an actual response was only required in re-
ference to the error detection task. As such, we were interested to see
whether fluid intelligence and working memory are related to the im-
provements in error detection, rather than sequence learning. If so, it
may suggest that participants prioritised learning strategies aimed at
detecting errors more than learning sequences.

Across the four observational practice sub-sessions (runs), the mean
error detection accuracy in the OP group was 89% [87%, 91%]. There
was a significant improvement from run 1 to run 2 (t91 = 3.99,
p = 0.0001) with no significant improvements in the following runs
(p > 0.380; Fig. 6A). We excluded run 1 from the subsequent analysis
assuming that during the first sub-session, error detection accuracy
reflected a familiarisation phase. Therefore, observational practice-re-
lated error detection improvement was measured as error detection
accuracy difference between run 2 and run 4 (however, the results of
run 1 vs. run 4 also show the same pattern). Although on average there
was no significant difference in error detection between runs two and
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four, we wanted to investigate individual differences in participants’
error detection improvements. Importantly, we were able to measure
only the general (pre- to post- training improvement) and not the se-
quence-specific improvement as participants were never asked to watch
the untrained sequences during training.

The error detection accuracy at run 2 (as a baseline performance),
fluid intelligence, and working memory measures were z-scored and
included in a multiple regression analysis to test whether they predict
the error detection accuracy improvement from run 2 to run 4. The
regression model significantly explained 11% variance in error detec-
tion, with lower baseline performance (35%) and higher working
memory (4%) as significant predictors (Table 4; Fig. 6B). To show the
raw data, we use scatter plots to visualise the relationship between
change in accuracy score and fluid intelligence, as well as working
memory (Fig. 6C). Consistent with the modelling results, Pearson
Skipped correlations show that working memory is modestly associated
with changes in accuracy detection r = 0.21 95%CI = [0.00, 0.40],
whereas fluid intelligence explains very little of the variance r = 0.01

95%CI = [−0.19, 0.21]. A similar set of results was observed for the
general motor skill learning in the PP group (Table 3). Overall, in the
OP group, working memory was a significant predictor for improve-
ments in the error detection task, but not for the motor skill learning
task.

Fig. 6. Error detection accuracy and perceptual improvement predictors. (A) Group-averaged accuracy in response to the error question during observational
training. Large dots: group averages and 95% CI; small dots: individual participant values. (B) Perceptual improvement predictor variables. The figure shows
standardised beta estimates of how error detection accuracy in run 2, fluid intelligence, and working memory predict the perceptual improvement from run 2 to run
4. In addition, the figure shows the predictor intercorrelation coefficients. Green: positive, red: negative, fading reflects significance. (C) Scatter plots showing the
raw data for changes in accuracy improvement from run 2 to run 4 as a function of fluid intelligence (left panel) as well as working memory (right panel). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Observational practice group error detection improvement (from run 2 to run 4)
regression analysis summary.

Run4 – Run2 accuracy

Model F3,88 = 16.56, p < 0.0001, R2 = 0.334

Coefficients β [95% CI] t p

Intercept 0 0 1
Run2 accuracy −0.588 [−0.765, −0.411] −6.618 < 0.0001
Fluid intelligence 0.144 [−0.052, 0.341] 1.463 0.147
Working memory 0.203 [0.014, 0.393] 2.133 0.036
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4. Discussion

Although evidence suggests that learning by physical and observa-
tional practice relies on partly shared cognitive and neural systems, no
research to date has investigated the extent to which common in-
dividual differences predict both types of learning. In the current study,
by taking an individual differences approach to study skill acquisition,
we provide a novel test of the extent to which common cognitive sys-
tems underpin learning following observational and physical practice.
Here we show that individual differences in working memory and fluid
intelligence predict improvements in dissociable aspects of motor
learning following physical practice, but not observational practice.
Therefore, these results suggest limits to the extent that learning
through different forms of experiences, such as physical and observa-
tional practice, rely on shared mechanisms. Consequently, models of
observational learning need updating to reflect the extent to which such
learning is based on shared as well as distinct processes compared to
physical learning. We suggest that such differences could reflect the
more intentional nature of learning during physical compared to ob-
servational practice, which relies to a greater extent on higher-order
cognitive resources such as working memory and fluid intelligence. One
potential implication of these findings is that lower-order sequence-
learning processes, which are associated with visuomotor integration
and motor planning, may be more invariant across individuals. More
broadly, these findings have implications for learning interventions that
aim to improve skill acquisition, as it may point towards the types of
mechanisms involved in different modes of learning, as well as the type
of cognitive systems that may be more or less amenable to modification.
In the following, we discuss several implications that the findings have
for understanding cognitive mechanisms of physical and observational
practice, as well as some of the limitations of the research, which
should also help to guide the interpretation of the findings.

4.1. Individual differences in skill learning through physical and
observational practice

Our findings demonstrate that working memory and fluid in-
telligence predict dissociable aspects of learning through physical
practice. Fluid intelligence predicts sequence-specific motor learning
beyond the influence of working memory. In contrast, working memory
predicts general learning improvements across all sequences from pre-
to post-training (Fig. 7). Therefore, although working memory and fluid
intelligence are correlated, they also support different processes in
learning (Ackerman et al., 2005; Kane et al., 2005; Shipstead et al.,
2016; Wang et al., 2017). Indeed, the results mirror findings observed
in non-motor contexts, such as when learning abstract rules, where
fluid intelligence has been shown to predict learning and retrieval
processes above and beyond working memory (Wang et al., 2017).

It has been suggested previously that working memory might relate
more to general skill learning rather than sequence-specific learning
(Janacsek & Nemeth, 2013; Rhodes, Bullock, Verwey, Averbeck, &
Page, 2004). Working memory is important in supporting attention and
maintaining task goals (Unsworth & Engle, 2005). These abilities are
essential for general task performance, which relies on short-term

memorisation of the cued sequence and fast execution of discrete key-
presses. By contrast, sequence-specific skills additionally involve long-
term memory retrieval of the trained sequence and integration of its
discrete keypress elements into a unified sequence representation
(Abrahamse, Ruitenberg, de Kleine, & Verwey, 2013; Verwey, 1996).
Moreover, selective retrieval of relevant information from long-term
memory is a crucial component of fluid intelligence (Unsworth & Engle,
2005). Therefore, these results demonstrate that fluid intelligence
predicts a measure of learning that better reflects processes that are
specifically tied to learning action sequences, rather than improvements
in task performance more generally (Janacsek & Nemeth, 2013; Wong
et al., 2015).

Similar to learning through physical practice, learning through ob-
servation involves high-order cognitive processes (Hodges, Ong,
Larssen, & Lim, 2011; Lim, Larssen, & Hodges, 2014; Maslovat, Hodges,
Krigolson, & Handy, 2010; Vogt & Thomaschke, 2007). Although many
similarities exist between the cognitive and neural processes supporting
learning though physical and observational practice (Blandin et al.,
1999; Boutin et al., 2010; Gardner et al., 2017; Hodges et al., 2007;
Vogt & Thomaschke, 2007), here we show limits to this similarity. In-
deed, as tested here, working memory and fluid intelligence predict
dissociable aspects of learning in physical, but not observational prac-
tice (Fig. 6). Thus, performance gains following observational practice
seem largely indifferent to variation in working memory and fluid in-
telligence across individuals.

The lack of variation in performance gains according to our key
individual differences following observational learning warrants further
consideration from a statistical viewpoint. Within a null hypothesis
significance testing statistical framework, it is important to remember
that failure to reject the null hypothesis is not the same as supporting
the null hypothesis. Indeed, to help guide the interpretation of the re-
sults, any failure to reject the null hypothesis must be qualified by the
sensitivity of the design. If we consider the sensitivity of our primary
measure, therefore, we had 80% power to detect small to medium ef-
fects (f2 = 0.12), which means we can be relatively confident that if an
effect of this magnitude or higher did exist, we would have been able to
detect it. As a consequence, our best estimate of the influence of
working memory and fluid intelligence on learning through observa-
tional practice, is that if an effect does exist, it is likely to be close to
zero or relatively small in magnitude (i.e., smaller than f2 = 0.12). At a
minimum, therefore, our results demonstrate that, as tested here,
working memory and fluid intelligence play distinct roles in learning
through physical and observational practice. Moreover, for future re-
search to convincingly test for the presence of smaller effects (i.e., less
than f2 = 0.12), considerably larger sample sizes would be required.

There are many ways to learn through observing others and we
expect that there are circumstances where cognitive abilities would
indeed predict learning rates through observation. As such, it is im-
portant to consider constraints on the generality of our findings
(Simons, Shoda, & Lindsay, 2017). For example, situations that place
more demand on intentional learning strategies during the observation
of others may reveal individual differences in learning that resemble
more closely those observed during physical practice. Support for this
suggestion is provided by previous research, which shows that fluid
intelligence and working memory are significant predictors for inten-
tional, but not unintentional, learning. Under intentional learning
conditions, individuals engage in heightened cognitive control pro-
cesses including the regulation of attention and executive control
(Maxwell, Masters, & Eves, 2003; Norman, Price, & Duff, 2006;
Unsworth & Engle, 2005). Such differences in learning strategies and
associated cognitive processes between physical and observational
learning may underlie different patterns of individual differences.

Findings from the current study also support the proposed re-
lationship between the intentionality of sequence learning and in-
dividual differences. The observational practice group was given ex-
plicit instructions to perform two tasks: learn sequences and detect

Fig. 7. A schematic illustration of the relationships between cognitive abilities
and skill learning through physical and observational practice.
Blue = untrained. Red = trained. S = Sequence. (For interpretation of the re-
ferences to colour in this figure legend, the reader is referred to the web version
of this article.)
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errors. However, only the error detection task was monitored during
training sessions, which may have placed more focus and attentional
resources on detecting errors than learning sequences. In support of this
proposal, following observational practice, we found that working
memory was a significant predictor of the improvement in error de-
tection accuracy, but not for the improvement in keypress sequence
performance. This finding mirrored the relationship between working
memory and pre- to post-test improvements in sequence learning
through physical practice. As such, we suggest that sequence-learning
by observation became more of a secondary task compared to error
detection, thus possibly explaining why cognitive abilities did not
emerge as reliable predictors of practice effects. Indeed, previous re-
search shows that implicit learning has little variation across in-
dividuals (Kaufman et al., 2010; Reber, Walkenfeld, & Hernstadt,
1991), whereas explicit or intentional learning varies as a function of
cognitive abilities (Christou, Miall, McNab, & Galea, 2016).

Although we acknowledge that including the error detection task
may have altered the attentional focus away from observational learning,
we chose to include it in order to be able to identify how engaged par-
ticipants were in the process of learning through observation. If we had
chosen to leave out such a task, we would have no assurance that par-
ticipants were actually observing the videos during practice, which was
crucial to our study. As such, we were left with an experimental trade-off
with no obviously superior approach. Moreover, although this design
choice could be one reason for the different results between the two
training groups in terms of working memory, it is unlikely to account for
the results regarding fluid intelligence. Indeed, it seems reasonable to
argue that attentional focus and consequent deployment of working
memory resources could be altered by the choice of task during physical
compared to observational learning. However, it is difficult to argue how
fluid intelligence could be affected in the same way by the choice of task.
Therefore, we suggest more caution should be taken when interpreting
the relationship between working memory and observational learning
than fluid intelligence and observational learning. In addition, a further
feature of the experimental procedure in our study may have contributed
to the unintentional nature of sequence learning in the observational
practice group. The main task for the physical practice group was fast
and accurate execution of the cued sequences, receiving constant feed-
back, thus encouraging performance improvement. In retrospect, we
acknowledge that physical practice without feedback would have been
more appropriate for comparing the effects of learning by physical and
observational practice (Kirsch & Cross, 2015).

Although differences in learning focus (action sequences vs. error
detection) may contribute to the different results observed in terms of
individual differences, these results have important implications for
ecological considerations regarding observational learning. That is, in
many social contexts, learning through observation will frequently be
task-independent (c.f., Cross et al., 2009). Of course, there are times
when we may want to observe and intentionally learn a new skill, such
as how to perform a pirouette in ballet or how to change a flat tyre. As
such, it will be valuable for future studies to examine the extent to
which individual differences in cognitive abilities influence learning by
observation compared to physical practice across a much broader range
of task complexities, such as learning to juggle (Hodges & Coppola,
2015), tie knots (Cross, Hamilton, Cohen, & Grafton, 2017), play the
guitar (Gardner et al., 2017) or dance (Kirsch & Cross, 2015). But in
many social instances, we will be engaged in a primary task (make a
cup of tea or chat with friends) and passively learn regularities in the
environment from watching others. In contrast, in physical practice, we
are more likely to have a pre-determined intention to learn and there-
fore practice a new task. Hence, the operation of cognitive mechanisms
that underpin observational learning, which is typical in everyday life,
may be relatively invariant across individuals. These relatively in-
variant cognitive mechanisms may reflect relatively lower-order se-
quence-learning processes, which are associated with visuomotor in-
tegration and motor planning.

4.2. Broader implications for models of physical and observational practice

Although common cognitive and neural processes are implicated in
action perception and production, as well as during physical and ob-
servational learning, our results highlight the importance of testing
limits to such shared mechanisms. As such, models of observational
learning should account for common cognitive processes, which are
likely to be shared with learning by physical practice, as well as distinct
processes that might also be at play. Moreover, these mechanisms may
be flexibly deployed depending on the learning context, such that there
may be different sub-types of observational learning (some more in-
tentional and others more passive, for example). A different combina-
tion of processes may be involved depending on such contexts.

Relatedly, models of observational learning that explicitly distin-
guish between action-specific (i.e., domain-specific) processes and do-
main-general processes, such as the regulation of attention and execu-
tive control, would be valuable. Such models have emerged in the
domain of sequence execution (Abrahamse et al., 2013; Verwey, 2001;
Verwey, Shea, & Wright, 2015) and these may offer fertile ground to
build upon for models of observational learning. This is particularly
pertinent given the wide variety of frontoparietal brain regions that
have been implicated in observational learning (Cross et al., 2009;
Higuchi et al., 2012; Kirsch & Cross, 2015; Sakreida et al., 2018; Vogt &
Thomaschke, 2007). Many of these frontoparietal regions overlap with
key nodes in action representation systems, such as the mirror neuron
system (Rizzolatti & Sinigaglia, 2016), as well as domain-general con-
trol processes that have been associated with the multiple demand
network (Duncan, 2010). Therefore, studies that distinguish between
different functional contributions of frontoparietal cortex would be
valuable.

Furthermore, models that distinguish between domain-specific and
domain-general contributions could also take inspiration from models of
semantic and social cognition that stress the interplay between domain-
specific representational content and domain-general ‘control’ of such
representations (Barrett, 2012; Binney and Ramsey, 2019; Jefferies,
2013; Lambon Ralph, Jefferies, Patterson, & Rogers, 2017; Michael &
D’Ausilio, 2015; Ramsey, 2018; Spunt & Adolphs, 2017). Indeed, in
physical practice, for example, it could be the interplay between re-
presentation and control that may vary as a function of individual dif-
ferences in cognitive abilities. Moreover, it is this interplay between
cognitive components that may differ depending on working memory
and fluid intelligence – that is, fluid intelligence is likely to predict
tighter links between control systems and task-specific representations.
In contrast, this interplay between representational content and control is
likely to be minimised in relatively passive observational learning, as
cognitive resources are deployed to other task features. The broader
point is that models need to be specified before they can be tested (Gray,
2017), which means results should generate hypotheses that can be
tested in future studies. Moreover, this approach is consistent with pla-
cing a greater emphasis on central and perceptual processes when at-
tempting to understand motor performance (Rosenbaum, 2005;
Rosenbaum, Chapman, Coelho, Gong, & Studenka, 2013).

Acknowledgments

This work was supported by the Ministry of Defence of the United
Kingdom Defence Science and Technology Laboratory [grant number
DSTLX-1000083177 to ESC and RR], the Economic and Social Research
Council [grant numbers ES/K001884/1 to RR and ES/K001892/1 to
ESC], a Marie Curie Actions/FP7 [CIG11-2012-322256 to ESC], and a
European Research Council grant [ERC-2015-StG-677270 to ESC].

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.cognition.2019.04.015.

D. Apšvalka, et al. Cognition 190 (2019) 170–183

181

https://doi.org/10.1016/j.cognition.2019.04.015
https://doi.org/10.1016/j.cognition.2019.04.015


References

Abrahamse, E. L., Ruitenberg, M. F. L., de Kleine, E., & Verwey, W. B. (2013). Control of
automated behavior: Insights from the discrete sequence production task. Frontiers in
Human Neuroscience, 7, 82. https://doi.org/10.3389/fnhum.2013.00082.

Ackerman, P. L. (1988). Determinants of individual differences during skill acquisition:
Cognitive abilities and information processing. Journal of Experimental Psychology:
General, 117(3), 288–318. https://doi.org/10.1037/0096-3445.117.3.288.

Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2005). Working memory and intelligence:
The same or different constructs? Psychological Bulletin, 131(1), 30–60. https://doi.
org/10.1037/0033-2909.131.1.30.

Ackerman, P. L., & Cianciolo, A. T. (2000). Cognitive, perceptual-speed, and psychomotor
determinants of individual differences during skill acquisition. Journal of Experimental
Psychology: Applied, 6(4), 259–290.

Alexander, J. R. M., & Smales, S. (1997). Intelligence, learning and long-term memory.
Personality and Individual Differences, 23(5), 815–825. https://doi.org/10.1016/
S0191-8869(97)00054-8.

Amthauer, R., Brocke, B., Liepmann, D., & Beauducel, A. (2001). Intelligenz-Struktur-Test
2000 R. Göttingen: Hogrefe 2.

Apšvalka, D., Ramsey, R., & Cross, E. S. (2018). Anodal tDCS over primary motor cortex
provides no advantage to learning motor sequences via observation. Neural Plasticity,
1237962, 1–14.

Apšvalka, D., Cross, E. S., & Ramsey, R. (2018). Observing action sequences elicits se-
quence-specific neural representations in frontoparietal brain regions. Journal of
Neuroscience, 38(47), 10114–10128.

Baddeley, A. (1992). Working memory. Science, 255(5044), 556–559.
Bandura, A., & Walters, R. H. (1963). Social learning and personality development. New

York: Holt Rinehart and Winston.
Barrett, H. C. (2012). A hierarchical model of the evolution of human brain specializa-

tions. Proceedings of the National Academy of Sciences, 109(Supplement 1),
10733–10740. https://doi.org/10.1073/pnas.1201898109.

Beauducel, A., Brocke, B., & Liepmann, D. (2001). Perspectives on fluid and crystallized
intelligence: Facets for verbal, numerical, and figural intelligence. Personality and
Individual Differences, 30(6), 977–994. https://doi.org/10.1016/S0191-8869(00)
00087-8.

Bird, G., Osman, M., Saggerson, A., & Heyes, C. (2005). Sequence learning by action,
observation and action observation. British Journal of Psychology, 96(3), 371–388.
https://doi.org/10.1348/000712605X47440.

Binney, R. J., & Ramsey, R. (2019). Social semantics: The role of conceptual knowledge
and cognitive control in a neurobiological model of the social brain. https://doi.org/
10.31234/osf.io/36tm5.

Blandin, Y., Lhuisset, L., & Proteau, L. (1999). Cognitive processes underlying observa-
tional learning of motor skills. The Quarterly Journal of Experimental Psychology Section
A, 52(4), 957–979. https://doi.org/10.1080/713755856.

Bo, J., & Seidler, R. D. (2009). Visuospatial working memory capacity predicts the or-
ganization of acquired explicit motor sequences. Journal of Neurophysiology, 101(6),
3116–3125. https://doi.org/10.1152/jn.00006.2009.

Boutin, A., Fries, U., Panzer, S., Shea, C. H., & Blandin, Y. (2010). Role of action ob-
servation and action in sequence learning and coding. Acta Psychol. (Amst), 135,
240–251. https://doi.org/10.1016/j.actpsy.2010.07.005.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.
Brown, L. E., Wilson, E. T., & Gribble, P. L. (2009). Repetitive transcranial magnetic

stimulation to the primary motor cortex interferes with motor learning by observing.
Journal of Cognitive Neuroscience, 21(5), 1013–1022.

Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action
observation and imitation in the human brain. NeuroImage, 50(3), 1148–1167.
https://doi.org/10.1016/j.neuroimage.2009.12.112.

Cattell, R. B. (1971). Abilities: Their structure, growth, and action.
Christou, A. I., Miall, R. C., McNab, F., & Galea, J. M. (2016). Individual differences in

explicit and implicit visuomotor learning and working memory capacity. Scientific
Reports, 6(1), 36633. https://doi.org/10.1038/srep36633.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences ((2nd ed.).). Hillsdale,
N.J: L. Erlbaum Associates.

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155.
Cross, E. S., Hamilton, A. F. D. C., Cohen, N. R., & Grafton, S. T. (2017). Learning to tie the

knot: The acquisition of functional object representations by physical and observa-
tional experience. PloS One, 12(10) e0185044.

Cross, E. S., Kraemer, D. J. M., Hamilton, A. F.d. C., Kelley, W. M., & Grafton, S. T. (2009).
Sensitivity of the action observation network to physical and observational learning.
Cerebral Cortex, 19(2), 315–326. https://doi.org/10.1093/cercor/bhn083.

Davis, M. H. (1980). A multidimensional approach to individual differences in empathy.
JSAS Catalogue of Selected Documents in Psycholog, 10(85).

Davis, M. H. (1983). Measuring individual differences in empathy: Evidence for a mul-
tidimensional approach. Journal of Personality and Social Psychology, 44(1), 113–126.
https://doi.org/10.1037/0022-3514.44.1.113.

Gagne, R. M. (1967). Curriculum research and the promotion of learning. Perspectives of
Curriculum Evaluation, 19–38.

Gardner, T., Aglinskas, A., & Cross, E. S. (2017). Using guitar learning to probe the action
observation network's response to visuomotor familiarity. NeuroImage, 156, 174–189.
https://doi.org/10.1016/j.neuroimage.2017.04.060.

Gentsch, A., Weber, A., Synofzik, M., Vosgerau, G., & Schütz-Bosbach, S. (2016). Towards
a common framework of grounded action cognition: Relating motor control, per-
ception and cognition. Cognition, 146, 81–89. https://doi.org/10.1016/j.cognition.
2015.09.010.

Gray, K. (2017). How to map theory: Reliable methods are fruitless without rigorous

theory. Perspectives on Psychological Science, 12(5), 731–741. https://doi.org/10.
1177/1745691617691949.

Higuchi, S., Holle, H., Roberts, N., Eickhoff, S. B., & Vogt, S. (2012). Imitation and ob-
servational learning of hand actions: Prefrontal involvement and connectivity.
NeuroImage, 59(2), 1668–1683. https://doi.org/10.1016/j.neuroimage.2011.09.021.

Hodges, N. J., & Coppola, T. (2015). What we think we learn from watching others: The
moderating role of ability on perceptions of learning from observation. Psychological
Research Psychologische Forschung, 79(4), 609–620.

Hodges, N. J., Ong, N. T., Larssen, B. C., & Lim, S. B. (2011). What observation of motor
skills does and does not teach us. BIO Web of Conferences, 1, 34. https://doi.org/10.
1051/bioconf/20110100034.

Hodges, N. J., Williams, A. M., Hayes, S. J., & Breslin, G. (2007). What is modelled during
observational learning? Journal of sports sciences, 25(5), 531–545.

Horn, J. L. (1976). Human abilities: A review of research and theory in the early 1970s.
Annual Review of Psychology, 27(1), 437–485.

Janacsek, K., & Nemeth, D. (2013). Implicit sequence learning and working memory:
Correlated or complicated? Cortex, 49(8), 2001–2006. https://doi.org/10.1016/j.
cortex.2013.02.012.

Jefferies, E. (2013). The neural basis of semantic cognition: Converging evidence from
neuropsychology, neuroimaging and TMS. Cortex, 49(3), 611–625.

John, O. P., Donahue, E. M., & Kentle, R. L. (1991). The big five inventory-versions 4a and
54. Berkeley, CA: University of California, Berkeley, Institute of Personality and
Social Research.

John, O. P., Naumann, L. P., & Soto, C. J. (2008). Paradigm shift to the integrative Big
Five trait taxonomy: History, measurement, and conceptual issues. In O. P. John, R.
W. Robbins, & L. A. Pervin (Eds.). Handbook of personality: Theory and research (pp.
114–156). New York: Guilford.

Jonassen, D. H., & Grabowski, B. L. (2012). Handbook of individual differences, learning,
and instruction. Routledge.

Kane, M. J., Hambrick, D. Z., & Conway, A. R. A. (2005). Working memory capacity and
fluid intelligence are strongly related constructs: Comment on Ackerman, Beier, and
Boyle (2005). Psychological Bulletin, 131(1), 66–71. https://doi.org/10.1037/0033-
2909.131.1.66.

Kaufman, S. B., Deyoung, C. G., Gray, J. R., Jiménez, L., Brown, J., & Mackintosh, N.
(2010). Implicit learning as an ability. Cognition, 116(3), 321–340. https://doi.org/
10.1016/j.cognition.2010.05.011.

Kirsch, L. P., & Cross, E. S. (2015). Additive routes to action learning: Layering experience
shapes engagement of the action observation network. 4799–811 Cerebral Cortex
(New York, N.Y. : 1991), 25(12), https://doi.org/10.1093/cercor/bhv167.

Koran, M. L., Snow, R. E., & McDonald, F. J. (1971). Teacher aptitude and observational
learning of a teaching skill. Journal of Educational Psychology, 62(3), 219.

Lago-Rodríguez, A., & Cheeran, B. (2014). The role of mirror neurons in observational
motor learning: An integrative review. European Journal of Human Movement, 32,
82–103.

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science:
A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4 doi:ARTN
86310.3389/fpsyg.2013.00863.

Lambon Ralph, M. A., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and
computational bases of semantic cognition. Nature Reviews Neuroscience, 18(1), 42.

Lewandowsky, S., Oberauer, K., Yang, L.-X., & Ecker, U. K. H. (2010). A working memory
test battery for MATLAB. Behavior Research Methods, 42(2), 571–585. https://doi.
org/10.3758/BRM.42.2.571.

Lim, S. B., Larssen, B. C., & Hodges, N. J. (2014). Manipulating visual-motor experience to
probe for observation-induced after-effects in adaptation learning. Experimental Brain
Research, 232(3), 789–802. https://doi.org/10.1007/s00221-013-3788-6.

Maslovat, D., Hodges, N. J., Krigolson, O. E., & Handy, T. C. (2010). Observational
practice benefits are limited to perceptual improvements in the acquisition of a novel
coordination skill. Experimental Brain Research, 204(1), 119–130. https://doi.org/10.
1007/s00221-010-2302-7.

Mattar, A. A. G., & Gribble, P. L. (2005). Motor learning by observing. Neuron, 46(1),
153–160. https://doi.org/10.1016/j.neuron.2005.02.009.

Maxwell, J. P., Masters, R. S. W., & Eves, F. F. (2003). The role of working memory in
motor learning and performance. Consciousness and Cognition, 12(3), 376–402.
https://doi.org/10.1016/S1053-8100(03)00005-9.

McGregor, H. R., Cashaback, J. G., & Gribble, P. L. (2016). Functional plasticity in so-
matosensory cortex supports motor learning by observing. Current Biology, 26(7),
921–927.

Meier, B., & Cock, J. (2014). Offline consolidation in implicit sequence learning. Cortex,
57, 156–166. https://doi.org/10.1016/j.cortex.2014.03.009.

Michael, J., & D’Ausilio, A. (2015). Domain-specific and domain-general processes in
social perception – A complementary approach. Consciousness and Cognition, 36,
434–437. https://doi.org/10.1016/j.concog.2014.12.009.

Munafò, M. R., Nosek, B. A., Bishop, D. V. M., Button, K. S., Chambers, C. D., Percie du
Sert, N., ... Ioannidis, J. P. A. (2017). A manifesto for reproducible science. Nature
Human Behaviour, 1, 0021. https://doi.org/10.1038/s41562-016-0021.

Norman, E., Price, M. C., & Duff, S. C. (2006). Fringe consciousness in sequence learning:
The influence of individual differences. Consciousness and Cognition, 15(4), 723–760.
https://doi.org/10.1016/j.concog.2005.06.003.

Pernet, C. R., Wilcox, R., & Rousselet, G. A. (2013). Robust correlation analyses: False
positive and power validation using a new open source Matlab toolbox. Frontiers in
Psychology, 3, 606. https://doi.org/10.3389/fpsyg.2012.00606.

Prinz, W. (1997). Perception and action planning. European Journal of Cognitive
Psychology, 9(2), 129–154. https://doi.org/10.1080/713752551.

Ramsey, R. (2018). What are reaction time indices of automatic imitation measuring?
Consciousness and Cognition, 65, 240–254.

Raskin, R., & Terry, H. (1988). A principal-components analysis of the narcissistic

D. Apšvalka, et al. Cognition 190 (2019) 170–183

182

https://doi.org/10.3389/fnhum.2013.00082
https://doi.org/10.1037/0096-3445.117.3.288
https://doi.org/10.1037/0033-2909.131.1.30
https://doi.org/10.1037/0033-2909.131.1.30
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0020
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0020
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0020
https://doi.org/10.1016/S0191-8869(97)00054-8
https://doi.org/10.1016/S0191-8869(97)00054-8
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0035
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0035
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0035
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0040
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0040
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0040
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0045
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0050
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0050
https://doi.org/10.1073/pnas.1201898109
https://doi.org/10.1016/S0191-8869(00)00087-8
https://doi.org/10.1016/S0191-8869(00)00087-8
https://doi.org/10.1348/000712605X47440
https://doi.org/10.31234/osf.io/36tm5
https://doi.org/10.31234/osf.io/36tm5
https://doi.org/10.1080/713755856
https://doi.org/10.1152/jn.00006.2009
https://doi.org/10.1016/j.actpsy.2010.07.005
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0085
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0090
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0090
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0090
https://doi.org/10.1016/j.neuroimage.2009.12.112
https://doi.org/10.1038/srep36633
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0110
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0110
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0115
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0120
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0120
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0120
https://doi.org/10.1093/cercor/bhn083
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0130
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0130
https://doi.org/10.1037/0022-3514.44.1.113
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0140
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0140
https://doi.org/10.1016/j.neuroimage.2017.04.060
https://doi.org/10.1016/j.cognition.2015.09.010
https://doi.org/10.1016/j.cognition.2015.09.010
https://doi.org/10.1177/1745691617691949
https://doi.org/10.1177/1745691617691949
https://doi.org/10.1016/j.neuroimage.2011.09.021
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0165
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0165
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0165
https://doi.org/10.1051/bioconf/20110100034
https://doi.org/10.1051/bioconf/20110100034
http://refhub.elsevier.com/S0010-0277(19)30100-3/h9000
http://refhub.elsevier.com/S0010-0277(19)30100-3/h9000
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0175
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0175
https://doi.org/10.1016/j.cortex.2013.02.012
https://doi.org/10.1016/j.cortex.2013.02.012
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0185
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0185
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0190
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0190
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0190
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0195
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0195
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0195
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0195
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0200
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0200
https://doi.org/10.1037/0033-2909.131.1.66
https://doi.org/10.1037/0033-2909.131.1.66
https://doi.org/10.1016/j.cognition.2010.05.011
https://doi.org/10.1016/j.cognition.2010.05.011
https://doi.org/10.1093/cercor/bhv167
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0220
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0220
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0225
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0225
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0225
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0230
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0230
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0230
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0235
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0235
https://doi.org/10.3758/BRM.42.2.571
https://doi.org/10.3758/BRM.42.2.571
https://doi.org/10.1007/s00221-013-3788-6
https://doi.org/10.1007/s00221-010-2302-7
https://doi.org/10.1007/s00221-010-2302-7
https://doi.org/10.1016/j.neuron.2005.02.009
https://doi.org/10.1016/S1053-8100(03)00005-9
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0265
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0265
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0265
https://doi.org/10.1016/j.cortex.2014.03.009
https://doi.org/10.1016/j.concog.2014.12.009
https://doi.org/10.1038/s41562-016-0021
https://doi.org/10.1016/j.concog.2005.06.003
https://doi.org/10.3389/fpsyg.2012.00606
https://doi.org/10.1080/713752551
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0305
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0305
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0310


personality inventory and further evidence of its construct validity. Journal of
Personality and Social Psychology, 54(5), 890–902.

Reber, A. S., Walkenfeld, F. F., & Hernstadt, R. (1991). Implicit and explicit learning:
Individual differences and IQ. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 17(5), 888–896. https://doi.org/10.1037/0278-7393.17.5.888.

Rhodes, B. J., Bullock, D., Verwey, W. B., Averbeck, B. B., & Page, M. P.a. (2004).
Learning and production of movement sequences: Behavioral, neurophysiological,
and modeling perspectives. Human Movement Science, 23(5), 699–746. https://doi.
org/10.1016/j.humov.2004.10.008.

Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror
circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11(4),
264–274. https://doi.org/10.1038/nrn2805.

Rizzolatti, G., & Sinigaglia, C. (2016). The mirror mechanism: A basic principle of brain
function. Nature Reviews Neuroscience, 17(12), 757.

Rosenbaum, D. A. (2005). The Cinderella of psychology: The neglect of motor control in
the science of mental life and behavior. American Psychologist, 60(4), 308.

Rosenbaum, D. A., Chapman, K. M., Coelho, C. J., Gong, L., & Studenka, B. E. (2013).
Choosing actions. Frontiers in Psychology, 4, 273.

Sakreida, K., Higuchi, S., Di Dio, C., Ziessler, M., Turgeon, M., Roberts, N., & Vogt, S.
(2018). Cognitive control structures in the imitation learning of spatial sequences and
rhythms—An fMRI study. Cerebral Cortex, 28(3), 907–923. https://doi.org/10.1093/
cercor/bhw414.

Shipstead, Z., Harrison, T. L., & Engle, R. W. (2016). Working memory capacity and fluid
intelligence: Maintenance and disengagement. Perspectives on Psychological Science,
11(6), 771–799. https://doi.org/10.1177/1745691616650647.

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology:
Undisclosed flexibility in data collection and analysis allows presenting anything as
significant. Psychological Science, 22(11), 1359–1366. https://doi.org/10.1177/
0956797611417632.

Simmons, Joseph P., Nelson, Leif D., & Simonsohn, Uri, A 21 Word Solution (October 14,
2012). Available at SSRN: https://ssrn.com/abstract=2160588.

Simons, D. J., Shoda, Y., & Lindsay, D. S. (2017). Constraints on generality (COG): A

proposed addition to all empirical papers. Perspectives on Psychological Science, 12(6),
1123–1128. https://doi.org/10.1177/1745691617708630.

Singelis, T. M. (1994). The measurement of independent and interdependent self-con-
struals. Personality and Social Psychology Bulletin, 20(5), 580–591. https://doi.org/10.
1177/0146167294205014.

Spunt, R. P., & Adolphs, R. (2017). A new look at domain specificity: Insights from social
neuroscience. Nature Reviews Neuroscience, 18(9), 559–567. https://doi.org/10.1038/
nrn.2017.76.

Unsworth, N., & Engle, R. W. (2005). Individual differences in working memory capacity
and learning: Evidence from the serial reaction time task. Memory & Cognition, 33(2),
213–220. https://doi.org/10.3758/BF03195310.

Verwey, W. B. (1996). Buffer loading and chunking in sequential keypressing. Journal of
Experimental Psychology: Human Perception and Performance, 22(3), 544–562. https://
doi.org/10.1037/0096-1523.22.3.544.

Verwey, W. B. (2001). Concatenating familiar movement sequences: The versatile cog-
nitive processor. Acta Psychologica, 106(1–2), 69–95.

Verwey, W. B., Shea, C. H., & Wright, D. L. (2015). A cognitive framework for explaining
serial processing and sequence execution strategies. Psychonomic Bulletin & Review,
22(1), 54–77. https://doi.org/10.3758/s13423-014-0773-4.

Vogt, S., & Thomaschke, R. (2007). From visuo-motor interactions to imitation learning:
Behavioural and brain imaging studies. Journal of Sports Sciences, 25(5), 497–517.
https://doi.org/10.1080/02640410600946779.

Wang, T., Ren, X., & Schweizer, K. (2017). Learning and retrieval processes predict fluid
intelligence over and above working memory. Intelligence, 61, 29–36. https://doi.
org/10.1016/j.intell.2016.12.005.

Wiestler, T., & Diedrichsen, J. (2013). Skill learning strengthens cortical representations
of motor sequences. e00801 Elife, 2. https://doi.org/10.7554/eLife. 00801.

Wong, A. L., Lindquist, M. A., Haith, A. M., & Krakauer, J. W. (2015). Explicit knowledge
enhances motor vigor and performance: Motivation versus practice in sequence tasks.
Journal of Neurophysiology, 114(1), 219–232. https://doi.org/10.1152/jn.00218.
2015.

D. Apšvalka, et al. Cognition 190 (2019) 170–183

183

http://refhub.elsevier.com/S0010-0277(19)30100-3/h0310
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0310
https://doi.org/10.1037/0278-7393.17.5.888
https://doi.org/10.1016/j.humov.2004.10.008
https://doi.org/10.1016/j.humov.2004.10.008
https://doi.org/10.1038/nrn2805
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0330
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0330
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0335
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0335
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0340
http://refhub.elsevier.com/S0010-0277(19)30100-3/h0340
https://doi.org/10.1093/cercor/bhw414
https://doi.org/10.1093/cercor/bhw414
https://doi.org/10.1177/1745691616650647
https://doi.org/10.1177/0956797611417632
https://doi.org/10.1177/0956797611417632
https://ssrn.com/abstract=2160588
https://doi.org/10.1177/1745691617708630
https://doi.org/10.1177/0146167294205014
https://doi.org/10.1177/0146167294205014
https://doi.org/10.1038/nrn.2017.76
https://doi.org/10.1038/nrn.2017.76
https://doi.org/10.3758/BF03195310
https://doi.org/10.1037/0096-1523.22.3.544
https://doi.org/10.1037/0096-1523.22.3.544
http://refhub.elsevier.com/S0010-0277(19)30100-3/h9005
http://refhub.elsevier.com/S0010-0277(19)30100-3/h9005
https://doi.org/10.3758/s13423-014-0773-4
https://doi.org/10.1080/02640410600946779
https://doi.org/10.1016/j.intell.2016.12.005
https://doi.org/10.1016/j.intell.2016.12.005
https://doi.org/10.7554/eLife. 00801
https://doi.org/10.1152/jn.00218.2015
https://doi.org/10.1152/jn.00218.2015

	Fluid intelligence and working memory support dissociable aspects of learning by physical but not observational practice
	Introduction
	Method
	Participants
	Measures of individual differences
	Fluid intelligence
	Working memory
	Personality questionnaires

	Stimuli
	Videos
	Sequence execution trial
	Sequence observation trial

	Procedure
	Data analysis
	Measures of training effects on sequence learning
	Data processing
	Hypothesis testing

	Results
	Group characteristics
	Training effects on sequence learning
	Sequence-specific learning
	General learning
	Exploratory observation: Negative learning

	Fluid intelligence and working memory as predictors of learning
	Sequence-specific learning
	General skill learning

	Fluid intelligence and working memory as predictors of task-focussed learning

	Discussion
	Individual differences in skill learning through physical and observational practice
	Broader implications for models of physical and observational practice

	Acknowledgments
	Supplementary material
	References




