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ABSTRACT  
Social cognition has been argued to rely on automatic mechanisms, but little is known about how 
automatically the processing of body shapes is linked to other social processes, such as trait 
inference. In three pre-registered experiments, we tested the automaticity of links between 
body shape perception and trait inference by manipulating cognitive load during a response- 
competition task. In Experiment 1 (N = 52), participants categorised body shapes in the context 
of compatible or incompatible trait words, under high and low cognitive load. Bayesian multi- 
level modelling of reaction times indicated that interference caused by the compatibility of trait 
cues was insensitive to concurrent demands placed on working memory resources. These 
findings indicate that the linking of body shapes and traits is resource-light and more 
“automatic” in this sense. In Experiment 2 (N = 39) and 3 (N = 70), we asked participants to 
categorise trait words in the context of task-irrelevant body shapes. Under these conditions, no 
evidence of interference was found, regardless of concurrent load. These results suggest that 
while body shapes and trait concepts can be linked in an automatic manner, such processes are 
sensitive to wider contextual factors, such as the order in which information is presented.
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To develop mental representations of other people, 
we often link together various person features. For 
example, we may integrate what someone looks 
like, including their body size and shape, with infer-
ences relating to their character, such as whether 
they are kind and generous. Although such feature- 
integration is commonplace, the type and nature of 
cognitive processes that underpin such binding of 
social information are far from clear. Indeed, it is 
unclear if such links rely on more automatic or more 
e!ortful operations with regards to the involvement 
of the central executive. Therefore, the current study 
shines new light on the cognitive processes that link 
perceptual and inferential aspects of social cognition 
together, by assessing the extent to which such pro-
cesses rely on the availability of central executive 
resources.

While ample research has studied trait inferences 
from faces (Engell et al., 2007; Todorov et al., 2009; 
Todorov & Engell, 2008; Todorov & Uleman, 2003), 

bodies have received less attention. Nevertheless, 
bodies signal important social information (Aviezer 
et al., 2012; de Gelder et al., 2010). For example, 
body perception gives rise to stable inferences relat-
ing to aspects of people’s character such as health 
and personality (Greven et al., 2018; Naumann et al.,  
2009; Puhl & Heuer, 2009; Wildman & Ramsey,  
2021). Furthermore, inferences from bodies can be 
driven by expressive trait-implying behavior (e.g., 
overt body-language; de Gelder, 2006), as well as 
invariant features such as body size and shape (Hu 
et al., 2018). More broadly, with growing levels of 
obesity and body image dissatisfaction disorders 
emerging (Hehman et al., 2017; Wang et al., 2011; 
Zopf et al., 2016), the functional significance of body 
perception is of growing societal importance.

Of course, we do not solely rely on direct obser-
vation of visual appearance or behavior to form jud-
gements of people’s character. Trait-diagnostic 
information can also be gathered indirectly, such as 
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when talking with a friend or when reading a book 
(Mitchell, 2009; Mitchell et al., 2006). Such indirect 
trait-inferences rely on the operations of the theory 
of mind network, which comprises neural regions 
that are largely distinct from networks involved in 
the visual processing of bodies (Ramsey, 2018). The 
theory of mind network spans the medial prefrontal 
cortex, temporoparietal cortex and the temporal 
poles (Frith & Frith, 1999; Saxe & Kanwisher, 2003; 
van Overwalle, 2009). In contrast, body image percep-
tion engages patches of occipitotemporal cortex in 
the ventral visual stream (Downing & Peelen, 2011). 
What this research makes clear is that social cognition 
in general, as well as body perception and social infer-
ences more specifically, encompasses a distributed 
set of cognitive processes and neural networks.

Although past research on body perception and 
theory of mind has largely been conducted separately, 
more recent research has begun to probe the relation-
ship between perceptual and inferential processes in 
body perception. For example, using fMRI, Greven 
and colleagues (2016, 2017a, 2017b) showed that 
links between body-shape perception and trait knowl-
edge inferences involves functional coupling between 
distinct neural networks associated with body percep-
tion and theory of mind. Furthermore, behavioral 
research has shown that trait-inferences can bias later 
body-size judgments (Wildman & Ramsey, 2021). 
These studies, therefore, show that abstract trait con-
cepts and visual depictions of body shapes encompass 
spaces with partially shared structure, which can lead 
to bias and in"uence between visual and inferential 
domains (Over & Cook, 2018; Ramsey, 2018).

The demonstration of reciprocal links between per-
ceptual and inferential processes has opened new 
lines of research in understanding body perception, 
but many questions remain unanswered about the 
type and nature of such links. For example, to what 
extent are links between visual body shape represen-
tations and trait concepts reliant on more automatic 
or more deliberate cognitive processes?

One method to assess the automaticity of cogni-
tive processes is provided by dual-task paradigms 
(Lavie, 2005; 2010). In one version of the paradigm, 
a concurrent working memory task, which heavily 
taxes central cognitive resources, is performed along-
side the main task under investigation. For example, a 
high load condition may require holding six letters in 
memory, whereas a low load condition may only 

involve holding one letter in memory (Lavie et al.,  
2004). Limiting the availability of central resources 
by manipulating working memory load is argued to 
impair selective attention and reduce the ability to 
“filter out” distractor events competing for control 
over behavior.

As a result, in the context of a stimulus response 
compatibility paradigm, typical response patterns 
across di!erential load conditions show an increase 
in distractor interference under high load compared 
to low load for most classes of stimuli. For example, 
studies have shown this pattern of findings for the 
e!ects of task-irrelevant distractor letters on the 
identification of target letters (Konstantinou et al.,  
2014), and the e!ects of visual capture by singleton 
distractors during visual search (Lavie & De Fockert,  
2005). Additionally, de Fockert et al. (2001) showed 
that task-irrelevant faces, which were either compati-
ble or incompatible in terms of identity, interfered 
with the ability to classify written names as pop 
stars or politicians to a greater extent under high 
than low load. In exceptional cases, the level of inter-
ference is insensitive to concurrent demands placed 
on working memory (i.e., identical to low or no 
load), indicating that the processes relied on to com-
plete task objectives are dissociable from attentional 
resources. Examples of such exceptions include inter-
ference from spatially incongruent visual and touch 
cues (Zimmer & Macaluso, 2007), counterproductive 
gaze-cues (Hayward & Ristic, 2013), and incongruent 
finger movements (Ramsey et al., 2019). What this 
research makes clear is that high cognitive load 
increases the likelihood of interference from task-irre-
levant stimuli and can therefore reveal whether 
working memory resources play a regulatory role in 
this interference.

In the current work, if the process under study is 
relatively resource-intensive, a high compared to 
low cognitive load should increase interference in 
the main task. In contrast, minimal impact of load 
on the main task can be taken as an indicator of a rela-
tively resource-light and e#cient process that oper-
ates the same, irrespective of the level of load. In 
the present series of experiments, we used a dual- 
task paradigm to investigate the automaticity of 
links between body shapes and trait concepts. In a 
series of pilot studies, we first developed an interfer-
ence task that was sensitive to a compatibility e!ect 
between body shapes and trait words. Subsequently, 
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in three pre-registered experiments, we employed a 
dual-task paradigm to di!erentially tax working 
memory resources between high and low load con-
ditions. In Experiment 1, participants categorized 
body shapes in the presence of compatible or incom-
patible trait terms. In Experiment 2 and 3, participants 
categorized the same trait words across di!erent jud-
gement dimensions in the presence compatible or 
incompatible body shapes. Across all experiments, if 
the linking process is relatively resource-intensive, 
then high load would increase the reaction time 
(RT) interference e!ect between bodies and traits. 
Alternatively, if the linking process is relatively 
resource-light, then high load would have minimal 
impact on RT interference. Because our Bayesian 
multi-level statistical analyses specify the probability 
of possible parameter values, including zero, our 
data analysis approach allows evidence of either 
possibility to be provided.

Experiment 1

Pilot experiments

Prior to conducting our main experimental task in which 
cognitive load would be manipulated, we sought to 
establish a response competition task sensitive to an 
interference e!ect between traits and bodies. Response 
competition tasks measure the di!erence in RT 
between responses made in the context of compatible 
or incompatible pairings of target and distractor stimuli. 
For present purposes, the basic logic of the task was 
based on evidence that heavier and slimmer bodies 
tend to be judged di!erently. For example, heavy indi-
viduals are typically rated as less healthy, less extra-
verted, and less conscientious than slimmer 
individuals (e.g., Greven et al., 2018; Wildman & 
Ramsey, 2021). In contrast, greater muscularity is associ-
ated with higher ratings of health and extraversion, as 
well as lower ratings of agreeableness. As a result, we 
expected di!erences in RT for body-trait pairings that 
were compatible (e.g., slim, muscular body shapes 
paired with extraverted or healthy traits), versus incom-
patible (e.g., heavy body shapes paired with extraverted 
or healthy traits). Such an interference e!ect would be 
indicative of links between body shapes and trait 
concepts.

We conducted a series of four pilot studies (Total N  
= 79), in which participants categorized bodies as 

either slim or heavy in the context of trait adjectives 
appearing as text on-screen. Several aspects of the 
design were adjusted between pilots, allowing us to 
refine the main experimental task, which was to be 
nested within our working memory load manipu-
lation. A detailed report on the methods and 
findings of the pilot experiments is available in sup-
plementary materials (see Supplementary Report).

A pooled analysis of the datasets from Pilot Exper-
iments 3 and 4 (total N = 40) showed a small positive 
e!ect of body-trait compatibility on the speed of par-
ticipants’ responses. These findings suggest that the 
task parameters used in these last two pilot exper-
iments brought about interference, which was detect-
able with a similar level of statistical power that we 
would be using in the main experiments. As a result, 
we used this version of the paradigm as a basis for 
our main experimental task, as well as changing 
some of the trait adjectives used in the pilots to 
improve clarity and concreteness. The pilot studies 
also confirmed that participants were able to categor-
ize slim and heavy bodies accurately even when pre-
sented for only 30 ms. This constrained display 
interval for body stimuli was maintained for the 
main task, as it was likely to maximize the interference 
between trait adjectives and bodies.

Method

Pre-registration and open science statement
Across all three experiments, the research questions, 
hypotheses, planned analyses, and exclusion criteria 
were pre-registered. For Experiment 1, the pre-regis-
tration can be found at:  https://aspredicted.org/ 
uh5m5.pdf. We mention any deviations from the 
pre-registration in the text below. In addition, follow-
ing open science initiatives (Munafò et al., 2017), the 
raw data, stimuli, and analysis code for each exper-
iment are available online on the open science frame-
work (https://osf.io/4en9f/). Based on the pilot 
studies, we had a basis to expect an interference 
e!ect that was detectable in a sample of around 50 
participants. As a result, we aimed to collect a 
sample of 50 participants, and therefore set this as 
our stopping rule for data collection.

Participants
Fifty-six Bangor university students were recruited 
through Bangor University’s student participation 
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panel in exchange for course credit (17 male, 1 unspe-
cified, Mage = 19.20, SDage = 0.91). Following data pre- 
processing and exclusions, the final size of the sample 
subjected to our analyses was 52.

Stimuli
Eight computer-generated female bodies (four slim 
and four heavy) were produced in MakeHuman 
(version 1.1.1; www.makehumancommunity.org), a 
program for creating 3D human models. A slim 
body prototype was created using the muscular 
mesh, with the muscle parameter set to max and 
the weight parameter reduced slightly. A heavy pro-
totype was produced using the default mesh, with 
the weight parameter set to max and the muscle par-
ameter reduced considerably. Further changes were 
made to various parameters of the slim and heavy 
prototypes to maximize the salience of the overall 
size of the body. For the individual body identities, 
small variations were made to the body proportions 
and skin tone of these prototypes to produce four 
visually distinct bodies at each level of body size. 
Finally, these were rendered to 320 × 790 PNG 
images and cropped in GIMP to isolate the body 
(see Figure 1.).

Sixteen trait adjectives were selected for use in the 
current experiment, belonging to the categories of: 
healthy, unhealthy, extraverted and introverted (see  
Table 1). The pattern of compatibility was based on 
previous research regarding mappings between 
body shapes and trait inferences (e.g., Greven et al.,  
2018; Hu et al., 2018; Wildman & Ramsey, 2021). As 
a result, healthy and extraverted traits were coded 
as compatible with slim bodies, while unhealthy and 
introverted traits were coded as compatible with 
heavy bodies.

Tasks
Overview. All aspects of the experimental task were 
created and implemented in MATLAB 2015b using 
Psychtoolbox 3 (www.psychtoolbox.org). The exper-
iment employed a dual-task paradigm in which par-
ticipants were subjected to one of two load 
conditions across the duration of each experimental 
trial (working memory manipulation). During trials, 
participants were asked to categorize displayed 
bodies as slim or heavy as quickly and accurately as 
possible, in the context of compatible or incompatible 
trait cues (body categorization task). Participants were 

first asked to complete two separate practice blocks 
to familiarize themselves with the requirements of 
each task independently of the other. The first prac-
tice block consisted of 20 trials of the body categoriz-
ation task, while the second consisted of 16 trials of 
the working memory task. Following this, participants 
completed the main experimental block of 256 trials, 
where the main body categorization task was nested 
within the secondary working memory manipulation. 
In this main experimental block, every combination of 
body and trait stimulus was presented in each con-
dition of load and compatibility in a random order. 
Given the nature of our body stimuli, the best visual 
contrast for trait stimuli was achieved by placing 
them over the torso of the body rather than the 
true center of the screen. The locations of all stimuli 
were therefore standardized to this higher position 
by o!setting them by a fixed number of pixels verti-
cally. However, for simplicity, this location is hence-
forth referred to as the center (see Figure 2).

Categorization task. The categorization task required 
participants to categorize a body stimulus as either 
slim or heavy as quickly and accurately as possible, in 
the presence of a task-irrelevant trait cue. The task 
began with a fixation cross that was displayed in the 
center of the screen for 1000 ms, followed by a trait 
adjective which remained in the center of the screen 
for 700 ms. A body was then displayed on-screen 
behind the trait adjective for 30 ms, before being back-
ward masked. A unique mask was used for each of the 
eight body identities, each comprised of 10 pre-ren-
dered images displayed serially for 10 consecutive 
frames. On each of these frames the original body 
image had been divided into a 6 × 10 grid, and the 
resulting rectangles rearranged randomly. These 
scrambled images were intended to limit any visual 
after-e!ects of the body which might otherwise 
bleed into the response phase of the task.

During and after the mask, a yellow question mark 
was displayed in the center of the screen, prompting 
participants to respond by pressing “K” (slim) or “M” 
(heavy). From the onset of the mask, participants 
had 1970ms to respond (making the overall time con-
straint 2000ms from the onset of the body). The body 
categorization task ended either when the participant 
responded, or when this time elapsed. At this point 
there was an interval of 1000 ms. Although the 
screen was usually blank during this interval, if the 
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participant had not responded to the trial the word 
“missed” would be displayed in the center of the 
screen. This was to indicate to participants that they 
had failed to respond or not done so quickly 
enough. RT was recorded as the amount of time 
that elapsed between the o!set of the body stimulus 
and the participant’s response. The keypress was also 
recorded, and later used to calculate participants’ 
accuracy scores based on the proportion of correct 
responses (both overall and in each condition).

Working memory manipulation. The main task was 
nested within a secondary working memory manipu-
lation. At the start of each trial, a set of six dots were 
displayed in a hexagonal array around the center of 
the screen for approximately 500 ms. One or all of 
these dots were then replaced by letters comprising 
a memory set, which consisted of either a single 
letter (low load condition) or a set of six letters 
(high load condition). The letter/s at each relevant 
position of the array were selected at random with 
equal probability from a set of 10 possibilities: F, H, 
K, L, M, T, V, W, Y and X. In the low load condition, 
the letter was always presented at the top of the 
array with the other five positions replaced by dots, 
whereas in the high load condition, all six positions 
were occupied by a unique letter. The letter array 

remained on screen for either 850 ms (low load) or 
2000ms (high load), giving participants time to 
attend to each letter in the set. Participants were 
instructed to hold these letter/s in memory for the 
duration of the trial and were informed that a 
memory probe would test their retention at the end 
of the trial.

The memory probe consisted of a new letter dis-
played in yellow text in the center of the screen, 
which was equally likely to be one that had or had 
not appeared in the original memory set. On high 
load trials where the probe letter had been present 
at the start of the trial, this was equally likely to be 
drawn from any of the six locations of the original 
array. In cases where the probe letter did not match, 
this letter was equally likely to be any of the remain-
ing letters from the original set of 10. To respond to 
the probe, participants were instructed to press “E” 
if the letter had been present in the initial memory 
set, or “D” if the letter had been absent. Participants 
had a maximum of 3000 ms to respond to the 
memory probe. The accuracy of this response was 
recorded as a manipulation check. Percentage accu-
racy was later calculated for each condition based 
on the proportion of correct responses in each con-
dition. Mean di!erences across the sample, as well 
as their associated confidence intervals, were calcu-
lated based on the di!erence in accuracy scores 
between high and low load both on average and 
within each remaining condition of the design.

Trait probe
On a small subset of trials, a catch trial followed the 
ordinary sequence of events to probe participants 

Figure 1. Body stimuli used in all experiments.

Table 1. Trait adjective stimuli.

Compatible with: Slim bodies Heavy bodies

Category Healthy Extraverted Unhealthy Introverted

Active Outgoing Inactive Reserved
Energetic Talkative Lethargic Quiet
Strong Social Weak Unsocial
Fit Confident Unfit Shy
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knowledge of the trait cue. On these trials a question 
was displayed, asking participants to indicate which 
of four categories best described the trait adjective 
which had been displayed on the preceding trial 
(healthy, unhealthy, extraverted or introverted). 26 
of these catch trials occurred at random points 
during the main block of the experiment, and there 
were no time constraints on responses. Accuracy on 

these catch trials was recorded to gauge engagement 
and for use as a possible filtering criterion for data 
analysis.

Procedure
Participants were invited into the testing lab and 
asked to complete a consent form. The experimental 
task was then described to them verbally before 

Figure 2. Trial diagram for all three experiments. The correct response to the memory probe in all cases would be E (present). The 
mask following presentation in Experiment 1 lasted for the first 10 frames of the response portion of the trial (approx. 200 ms).
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commencing the two practice blocks. In rare cases 
where participants had di#culty understanding a par-
ticular aspect of the task (either the body-categoriz-
ation task or the working memory task), they were 
invited to repeat the relevant practice block. Follow-
ing this, participants completed the main block of 
the experiment as described above. After this, partici-
pants also completed an Implicit Association Test 
(IAT) constructed using the same body and trait 
stimuli from the main experiment (see Greenwald 
et al., 1998). This additional task was not part of our 
primary research question, but was included for the 
benefit of exploratory analysis which may seek to 
investigate relationships between this and our other 
measures. Finally, participants completed a short 
demographic questionnaire before being debriefed 
and awarded course credits for their participation.

Design and data analysis

All conditions and comparisons were within-subjects. 
We indicated in the pre-registration for Experiment 1 
that we would use a within-subjects factorial ANOVA 
as our primary inferential statistical test. However, 
since we submitted the pre-registration, we have 
begun to use a Bayesian multi-level estimation 
approach as a primary method of statistical inference. 
Given that multi-level models are a more comprehen-
sive tool and avoid the unrealistic assumptions of 
ANOVA (Barr et al., 2013), we decided to report our 
original pre-registered ANOVA in supplementary 
materials (see Supplementary Analysis). In the main 
text we report a Bayesian model, which also mirrors 
our pre-registered analysis approach for Experiments 
2 and 3. No meaningful di!erences existed between 
the inferences we drew from the Bayesian multi- 
level modeling, and the inferences we would have 
drawn from the ANOVA.

We followed a Bayesian estimation approach to 
multi-level modeling (McElreath, 2020), which our 
lab has adopted in recent papers (Bara et al., 2021;  
2023i). The main goal was to estimate parameters of 
interest in multi-level models of varying complexity, 
and compare the performance of these models. 
Therefore, we used two approaches to guide our 
interpretation of the findings. First, we reported and 
discussed the posterior distribution of our key par-
ameters of interest within the most complex model. 
Second, we performed model comparison via 

e#cient approximate leave-one-out cross validation 
(LOO; Vehtari et al., 2017). LOO is a method of estimat-
ing how accurately the model in question can predict 
out-of-sample data. Therefore, we took all the models 
and compared how accurately they could predict out- 
of-sample data. In this way, we could estimate the 
extent to which an increase in model complexity cor-
responded to an increase in model accuracy.

More specifically, we followed a recent translation 
of McElreath’s (2020) general principles into a 
di!erent set of tools (Kurz, 2020), which use the Baye-
sian modeling package “brms" to build multi-level 
models (Bürkner, 2017, 2018). Additionally, our data 
wrangling approach follows the “tidyverse” principles 
(Wickham & Grolemund, 2016) and we generate plots 
using the associated data plotting package “ggplot2”, 
as well as the “tidybayes’ package (Kay, 2020).

Given that our primary dependent variable is RT, we 
modeled the data using a shifted log-normal model, 
which has previously been shown to be particularly 
well-suited to fitting the distribution of RT data 
(Haines et al., 2020). Following the “keep it maximal” 
approach to multi-level modeling (Barr et al., 2013), 
we included the maximal number of varying e!ects 
that the design permitted. As such, varying intercepts 
and e!ects of interest were estimated for participants 
and stimulus items when possible.

We computed 10 models, which built incremen-
tally in complexity. We first computed three inter-
cepts-only models, just so that we could compare 
subsequent models that included predictors of inter-
est to models without any predictors. Model b0.1 
included an overall intercept, model b0.2 additionally 
included varying intercepts for participants and 
stimulus items, and model b0.3 additionally included 
a varying non-decision time (ndt) or “shift” parameter 
per participant. We then added predictors for com-
patibility (b1) body size (b2) and load (b3). Two-way 
interactions between compatibility*body size (b4.1), 
compatibility*load (b4.2) and body size*load (b4.3) 
were then added in further models. Model b5 was 
the full model, which additionally included the 
three-way interaction between compatibility, body 
size and load.

Factors were coded according to a deviation 
coding style, where factors sum to zero and the inter-
cept can then be interpreted as the grand mean and 
the main e!ects can be interpreted similarly to a con-
ventional analysis of variance (http://talklab.psy.gla. 
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ac.uk/tvw/catpred/). As such, compatibility, body size 
and load were coded as −0.5 (compatible / slim / low) 
and 0.5 (incompatible / heavy / high).

We set priors using a weakly informative approach 
(Gelman, 2006). Weakly informative priors di!er from 
uniform priors by placing a constrained distribution 
on expected results rather leaving all results to be 
equally likely. They also di!er from specific informa-
tive priors, which are far more precisely specified, 
because we currently do not have su#cient knowl-
edge to place more specific constraints on what we 
expect to find. Also, by using weakly informative 
priors, we allow for the possibility of larger e!ects, 
should they exist in the data (Gelman, 2006; Gelman 
et al., 2013; Gelman & Hill, 2006; Lemoine, 2019).

Moreover, a further advantage of weakly informa-
tive priors is that we would not expect the choice of 
prior, as long as it remained only weakly informative, 
to matter too much because the data would dominate 
the structure of the posterior distribution. The formula 
for the full model (model b5) is specified here: 

rt ∼ 1 + compatibility * body_size * load +

(1 + compatibility * body_size * load | pID) +

(1 + compatibility * load | word_stim) +

(1 + compatibility * load | body_stim),

ndt ∼ (1 | pID)

Due to our use of a multi-level estimation 
approach, we sought to retain as much trial-level 
data as possible. That being said, we still sought to 
remove cases that were likely to re"ect disengage-
ment from the task on both the trial and participant 
level. As a result, before subjecting our data to ana-
lyses, we removed cases on the trial and participant 
level in accordance with our pre-registered criteria. 
On the trial level, we first removed all trials for 
which a response to the main task was not recorded 
(i.e., where the participant did not respond in time), 
and ensured that the shortest recorded RT was plaus-
ible (in this case the shortest RT was 64 ms). On the 
participant level, we excluded participants whose 
average RT in the main task was further than 2.5 SD 
from the group mean, as well as those whose accu-
racy in the main task was more than 2.5 SD below 
the group mean. We also excluded those whose 
overall accuracy in the working memory task was 
further than 2.5 SD from the group mean.

Finally, we specified in our pre-registration that 
those with lower than 80% accuracy in responses to 
the trait probe catch trials would be considered for 
exclusion, however upon processing the data we 
found that few participants performed this well on 
the trait probe. Moreover, further investigation 
demonstrated that performance on catch trials did 
not predict task performance or susceptibility to the 
interference e!ect, and therefore this criterion and 
threshold were unlikely to discriminate between par-
ticipants who had or had not engaged with the task. 
As a result, we abandoned this exclusion criterion. 
Besides the removal of missed trials where no 
response was recorded, all our remaining filtering cri-
teria on the trial and participant level removed 
around 7% of the total data. This included four partici-
pant exclusions.

Results

Manipulation check
To assess the e#cacy of our cognitive load manipu-
lation, we evaluated performance in the working 
memory task. When averaging across all other con-
ditions, the overall mean di!erence in accuracy 
scores was 17.32% [14.59, 20.05], dz = 1.77 [1.32, 
2.20] (square brackets denote 95% confidence inter-
vals for all statistics in the article). More specifically, 
the high load condition (71.09%, [69.18, 73.00]) was 
lower than the low load condition (88.41%, [86.50, 
90.32]). This indicates that, as expected, our cognitive 
load manipulation substantially decreased perform-
ance on the working memory task. This di!erence 
was also insensitive to the contexts of compatibility 
or body size conditions, as indicated by the mean 
di!erences and confidence intervals per-condition 
(see Supplementary Figure S1).

Main task
Reaction time scores for correct responses in the main 
task are visualized in Figure 3. Visual inspection of the 
data indicates a small interference e!ect (slower 
responses to bodies in the context of incompatible 
traits, Cohen’s dz = 0.27, 95%CI[−0.01, 0.54]), which 
was largely insensitive to load and body size conditions.

Parameter estimates for the most complex model 
(Model b5), are shown in Figure 4 and Supplementary 
Table 1. The posterior distributions for our main pre-
dictors indicate a positive e!ect of compatibility 
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condition (where incompatible trials elicited slower 
responses), and a negative e!ect of load condition 
(where low load trials elicited slower responses). Relat-
ing this back to the way our factors are coded, relative 
to compatible (−0.5), the property of incompatibility 
(+0.5) increases RT scores (i.e., slower responses). This 
can be thought of as the e!ect of one “unit” of incom-
patibility having a positive e!ect on RT scores. Simi-
larly, comparing low (−0.5) to high (+0.5) cognitive 
load reveals that RT scores become lower (faster) 
when high load is present, thus higher (slower) when 
high load is absent. This negative e!ect of load con-
dition is likely to be owed to the di!erent durations 
of the memory set between high (2000ms) and low 
(850 ms) load conditions, allowing participants 
greater time to prepare for the onset of stimuli in the 
main task under high load. The duration was 
matched between these conditions in Experiment 2 
to increase consistency. The distribution of parameter 
estimates for all remaining fixed e!ects, as well as 
interaction terms, centered around zero, supporting 
the conclusion that the main interference e!ect was 
not modulated by body size and/or load conditions.

Model comparison is visualized in Figure 5. The x- 
axis (expected log pointwise predictive density) 

re"ects a measure of model performance, based on 
how well a model fitted with only part of the data pre-
dicts the remaining “left-out” data. Specifically, the 
value is the height of the probability distribution at 
the point of the left-out data, meaning that higher 
values correspond to better model performance. All 
models containing our fixed e!ects of interest outper-
formed the intercept-only model (Model b0.1), and 
the intercept plus varying item and participant inter-
cepts model (Model b0.2). The addition of a varying 
non-decision time parameter per participant (Model 
b0.3) approximated the predictive accuracy of all sub-
sequent models (see Figure 5). Error bars for all 
remaining models overlapped, suggesting similar per-
formance in terms of out-of-sample predictive 
accuracy.

Accuracy scores showed broadly the same pattern 
as the RT data and are visualized in Supplementary 
Figure S3.

Discussion

The first experiment showed an e!ect in which trait- 
implying words interfered with the categorization of 
body stimuli, which was una!ected by the addition 

Figure 3. Mean RT scores per participant and across the sample, plotted by load and body size conditions. Error bars represent 95% 
confidence intervals.
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of a demonstrably di#cult secondary task. This 
pattern of findings suggests that the cognitive 
resources used by working memory are either 
entirely separate or only minimally involved in 

mediating interference in the main task. As such, 
the results suggest that cognitive processes 
involved in linking bodies with trait inferences are 
relatively automatic in the sense that they are 

Figure 4. Parameter estimates for each predictor within Model b5.
Note: compat  = compatible vs. incompatible; body_size = slim vs. heavy; load = high vs. low; x-axis = log(RT); point estimate = median; error bars represent 
66% quantile intervals (thick black lines) and 95% quantile intervals (thin black lines). Interpretating these parameter estimates in terms of their original units is 
complex, as the shifted lognormal model is comprised of three components. To see estimates of these parameters in original units (milliseconds), please see 
Supplementary Figure S2.

Figure 5. Model comparison (1–10 models).
Note: Model b0.1 included an overall intercept; Model b0.2 added varying intercepts for participants and stimulus items; Model b0.3 added a varying non- 
decision time parameter per participant; Model b1 included predictors for compatibility (compatible vs. incompatible); Model b2 included predictors for 
body size (slim vs. heavy); Model b3 included predictors for load (low vs. high); Model b4.1 included the interaction between compatibility and body size; 
Model b4.2 included the interaction between compatibility and load; Model b4.3 included the interaction between body size and load; Model b5 was the 
full model, and included the three-way interaction between compatibility, body size and load. Elpd_loo = estimate of the expected log pointwise predictive 
density; loo = leave-one-out estimated cross validation; error bars = standard error of the mean.
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resource-light, and e#cient, such that they operate 
in an una!ected manner when cognitive resources 
are taxed heavily.

To contextualize the interpretation of Experiment 
1, we consider both the generalisability of the 
findings and one possible limitation, which together 
form the basis for a second follow-up experiment. 
First, we consider the question of whether the 
basic pattern of findings generalizes to a novel 
experimental context in which the roles of target 
and distractor stimuli are reversed. To do so, 
participants would respond to trait words while 
ignoring task-irrelevant body shapes. Assessing 
generalisability in this way will establish if the 
links between bodies and trait-words are also mea-
surable when the information is presented di!er-
ently and whether such links remain una!ected 
under cognitive load.

At the same time, reversing the roles of target and 
distractor stimuli in this manner would also address a 
possible limitation of Experiment 1, which relates to 
the consideration of data signal limits. While our 
experimental manipulation had a demonstrable 
e!ect on resource availability, data availability is 
also a critical factor in cognitive processing. Specifi-
cally, where a data signal is limited, the availability 
of additional processing capacity will not benefit per-
formance outcomes that depend on this data 
(Norman & Bobrow, 1975). On this basis, insensitivity 
of interference to load could re"ect a data signal 
limit, rather than processing e#ciency.

As a result, by reversing the roles of target and dis-
tractor stimuli in the manner described above, we can 
pose the question of whether the e!ect of categoriz-
ing trait-implying words in the context of task-irrele-
vant bodies is similarly invariant to cognitive load. 
Doing so can address both issues because, with 
respect to the relevant processes under study, a 
body shape is likely to re"ect a greater source of 
social information than a single trait-implying word 
(i.e., individuals may possess multiple traits, but not 
multiple bodies).

Experiment 2

To further probe the automaticity of links between 
body shapes and trait concepts, we created a 
second experiment in which the roles of the bodies 
and traits as target and distractor stimuli were 

switched. We also changed the dimension across 
which stimuli would be categorized, meaning the 
task assessed whether the purely incidental presence 
of compatible body shapes would automatically inter-
fere with the processing of trait concepts. Following 
the same set of predictions as Experiment 1, we 
expected a RT interference e!ect between body 
shapes and trait concepts such that compatible pair-
ings are categorized faster. An increase in the size of 
this e!ect under high load would be indicative of 
resource-intensive processing, whereas a more 
resource-light linking process would be typified by 
load having minimal impact on RT interference.

Method

Pre-registration and open science statement
As before, our research question, hypotheses, planned 
analyses, and exclusion criteria were pre- 
registered ( https://aspredicted.org/hb9i4.pdf). Also, 
the raw data, stimuli, and analysis code are available 
online on the open science framework (https://osf.io/ 
4en9f/). As our second experiment served primarily to 
replicate the same basic e!ect of Experiment 1 with 
an altered experimental task, we aimed to collect data 
from a similarly sized sample of around 50 participants.

Participants
Sixty-two participants were recruited online via 
Bangor University’s student participation panel in 
exchange for course credit (9 males, Mage = 22.2, 
SDage = 4.9). Following data pre-processing and exclu-
sions, the final size of the sample subjected to our 
analyses was 39.

Stimuli
All experimental stimuli were identical to those used 
in Experiment 1, except for a set of non-trait words 
used as stimuli for infrequent catch-trials. Although 
the sizes and locations of stimuli were similar to 
those of Experiment 1, online data collection meant 
that participants completed the experiment on a 
wide variety of systems likely to have di!erent 
monitor sizes and display settings. As a result, all 
stimuli sizes and locations were scaled relative to 
the height of the monitor on which they were dis-
played, meaning that the exact sizes of stimuli will 
have varied somewhat between participants.
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Tasks
Overview. As data for our second experiment were 
collected online, the new task was created in PsychoPy 
(2020.2) (Peirce et al., 2019). This again consisted of a 
dual-task paradigm in which participants had to cat-
egorize stimuli in the presence of task-irrelevant dis-
tractors (see Figure 2.). Participants were 
automatically guided through three practice blocks 
consisting of just the trait-categorization task, just 
the working memory task, and finally a short block 
of the full task. Participants were also given the 
option of repeating the third practice block, 
however few chose to do so. The main experimental 
block consisted of 288 trials (256 experimental trials, 
32 catch trials). As before, the locations of stimuli 
were o!set vertically relative to the bodies to opti-
mize readability. This is again referred to as the 
center for simplicity.

Trait categorization task. In the main task, partici-
pants had to decide whether a word written on- 
screen was a trait or non-trait. Traits were the same 
adjectives used in Experiment 1, and were displayed 
on around 90% of trials (256 out of 288 total trials). 
Non-traits were a set of nouns presented as catch 
trials on the other 10% of trials (32 trials). These 
were chosen to be of similar length and appearance 
to our trait stimuli to maximize the attention and 
engagement required to detect them (see Table 2.). 
Stimuli appeared in the center of the screen following 
a 1000 ms fixation cross, remaining for a maximum of 
2000ms or until the participant responded. Partici-
pants were asked to press the “M” key if the word 
was a trait, or “K” if the word was a non-trait. Stimuli 
were presented in a fully randomized order, and 
response accuracy and RT were recorded.

Working memory manipulation. As in Experiment 1, 
the main task was nested within a secondary working 
memory task. Most aspects of this were identical to 
that of Experiment 1, although some minor di!er-
ences existed due to practicalities of online data col-
lection (see Figure 2). In particular, the memory set 
was always displayed for 2000ms, regardless of load 
condition, and written feedback followed the 
memory probe to compensate for the lack of a phys-
ical lab environment and experimenter. As a result, 
the memory probe ended either when the participant 
responded or after 1000 ms, at which point “Correct!,” 

“Incorrect!,” or “missed” was displayed based on how 
or whether they had responded. RT and accuracy 
were recorded and calculated in the same manner 
as Experiment 1.

Procedure
Following recruitment, participants were directed to a 
Qualtrics survey which functioned as the consent 
form. Here participants were advised of the nature 
of the experiment, their right to withdraw and how 
to do so. At the end of this survey, they were auto-
matically redirected to the experiment hosted on 
Pavolvia. Upon completion, participants were redir-
ected to another Qualtrics survey which collected 
demographic information before presenting the 
debrief form. Here they were also asked two brief 
questions regarding strategies used during the exper-
iment, the data from which are available for the 
purpose of exploratory analyses. Upon submitting 
this final survey, participants were redirected to the 
automatic credit-granting system.

Design and data analysis
Per our pre-registration, we used a Bayesian multi- 
level estimation approach to evaluate our data, 
which was identical to that used in Experiment 
1. As we also outlined in our pre-registration, we 
applied several criteria to judge exclusions with an 
overall aim of reducing or eliminating cases which 
re"ected disengagement from the experimental 
task. This was especially relevant in the context of 
an online experiment where experimenter control 
was minimized. On the trial-level, we first excluded 
all non-trait trials, as these were unrelated to our 
hypotheses. We also excluded trials on which the 

Table 2. Traits and non-traits used in Experiment 3.
Trait Adjective (same as Experiment 1) Non-trait Counterpart

Outgoing Outhouse
Talkative Telephone
Social Socks
Confident Confetti
Active Acorn
Energetic Engine
Strong Stream
Fit Fur
Reserved Restaurant
Quiet Quilt
Unsocial Unicycle
Shy Sea
Inactive Insect
Lethargic Lettuce
Weak Wood
Unfit Unicorn
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response was incorrect, as these were unlikely to 
yield valid e!ects of compatibility or interference. 
Finally, we excluded trials with implausibly short 
RTs, as these were likely to re"ect an accidental 
keypress.

On the participant-level we sought to exclude par-
ticipants with high error rates likely to re"ect disen-
gagement. Our intention was to exclude 
participants with less than half the maximum possible 
trials per cell after excluding errors, however upon 
calculation it was found that this threshold would 
exclude a very high proportion of participants. 
Instead, we applied a threshold of a quarter of 
maximum possible trials for our main model. As trait 
trials represented the majority of trials across the 
experiment, we evaluated performance on non-trait 
trials as another measure of engagement. Participants 
with below chance performance on non-trait trials 
were excluded, as well as those whose overall accu-
racy in the working memory task was below 55%. In 
total, our filtering criteria excluded 22 participants. 
Although our revised exclusion criteria involve a relax-
ation of our preregistered criteria, we believe this 
re"ects a balance between retaining potentially 
meaningful data compared to excluding a much 
greater proportion of our total sample than originally 
anticipated.

Results

Manipulation check
As before, we first sought to evaluate the e#cacy of 
our cognitive load manipulation. Having removed 
non-trait trials, we calculated mean di!erences and 
confidence intervals for participants’ accuracy (calcu-
lated in the same manner as in Experiment 1) and 
RT scores on average and at each level of the 
design. The size of this mean di!erence for accuracy 
scores was similar to that of Experiment 1: mean 
di!erence = 18.97% [15.78, 22.15], dz = 2.11 [1.49, 
2.72]. Again, accuracy was lower for high load 
(66.87%, [64.62, 69.12]), than low load (85.84%, 
[83.59, 88.09]). Participants’ RT scores also followed 
a similar pattern: mean di!erence = 68.10 ms [50.66, 
85.53], dz = 1.39 [0.90, 1.86], with responses faster 
for low load (534.66 ms, [522.33, 546.99]), than high 
load (602.76, [590.43, 615.09]). Both of these patterns 
were consistent across all remaining levels of the 
design (see Supplementary Figures S4 and S5). This 

re"ects the anticipated impact of load, yielding 
large and unambiguous e!ects on both RT and accu-
racy in responses to the working memory probe.

Main task
Reaction time scores for correct responses in the 
main task are visualized in Figure 6. Visual inspection 
of the data does not show the predicted interference 
e!ect. Instead, RTs follow the category of trait 
word displayed. Responses were consistently faster 
for traits associated with slimmer body shapes 
(extraverted and healthy), and slower for those 
associated with heavier body shapes (introverted 
and unhealthy), irrespective of compatibility. In our 
figures and analyses, this is re"ected by an inter-
action e!ect between compatibility and body size. 
However, this pattern simply signifies faster categor-
ization of extraverted and healthy trait words regard-
less of condition. As such, it is possible that this 
e!ect is accounted for by the greater processing 
speed typically associated with positively-valenced 
stimuli (e.g., Kauschke et al., 2019; Kuperman et al.,  
2014).

Parameter estimates for the most complex model 
(Model 5), are shown in Figure 7 and Supplementary 
Table 1. The posterior distributions for our main pre-
dictors indicate a negative e!ect for the compatibili-
ty*body size interaction term. This re"ects the faster 
categorization of extraverted and healthy trait 
words, irrespective of compatibility (as discussed 
above). The distribution of parameter estimates for 
all remaining fixed e!ects centered around zero, indi-
cating no systematic e!ects of our manipulations.

Model comparison is visualized in Figure 8. All 
models containing our fixed e!ects of interest out-
performed the intercept-only model (Model b0.1), 
and the intercept plus varying intercepts for par-
ticipants and items model (Model b0.2). Again, 
the model which included a varying non-decision 
time parameter per participant (Model b0.3) had 
approximately equal predictive accuracy to all sub-
sequent models (see Figure 8). Error bars for all 
remaining models overlapped, suggesting similar 
performance in terms of out-of-sample predictive 
accuracy.

Accuracy scores, calculated in the same way as 
before, showed broadly the same pattern as the RT 
data, and are visualized in Supplementary Figure S7.
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Discussion

Experiment 2 did not yield the same pattern of inter-
ference as found in Experiment 1. Manipulating the 
compatibility of task-irrelevant bodies did not inter-
fere with the performance of a trait-based word cat-
egorization task, even in the presence of a 
demonstrably di#cult secondary task. Instead, the 
speed at which traits were categorized was explained 
by the trait concepts themselves. We therefore show 
that the findings of Experiment 1, which support the 
notion that links between body shapes and trait con-
cepts can be considered largely automatic, do not 
generalize to a context in which distractor bodies 
are present during the categorization of trait-based 
words. As a consequence, our findings cannot speak 
to the potential for data-limited processing as 
described earlier in the Discussion of Experiment 1, 
and as such leave open the possibility that forming 
links between other types of social information 
during body perception may place greater demands 
on executive resources.

Given the ambiguous outcome of Experiment 2, we 
sought to further contextualize our findings with a 
third experiment. The design of Experiment 2 
di!ered in comparison to Experiment 1 in two main 
ways. Firstly, in contrast to Experiment 1, the task 
used in Experiment 2 did not require a judgement 
across a social dimension, instead requiring categor-
ization of the trait word itself. Secondly, the trait 
words in Experiment 1 were displayed for a brief 
period before the bodies appeared, whereas both 
the target and distractor stimuli appeared at the 
same time in Experiment 2. Although this was 
designed to ensure participants had time to read 
the words (which was irrelevant when words 
became the target stimulus in Experiment 2), it is 
possible that this had a priming e!ect which is critical 
to the experimental outcomes seen in Experiment 
1. These di!erences leave open the possibility that 
the outcomes of Experiment 2 re"ect the activity of 
separate processes than those measured in Exper-
iment 1, which may be agnostic to the high-level 
social connotations of trait-implying words. If so, 

Figure 6. Mean RT scores per participant and across the sample, plotted by load and body size conditions. Error bars represent 95% 
confidence intervals.
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Figure 7. Parameter estimates for each predictor within Model 5.
Note: compat = compatible vs. incompatible; body_size = slim vs. heavy; load = high vs. low; x-axis = log(RT); point estimate = median; error bars represent 
66% quantile intervals (thick black lines) and 95% quantile intervals (thin black lines). Interpretating these parameter estimates in terms of their original 
units is complex, as the shifted lognormal model is comprised of three components. To see estimates of these parameters in original units (milliseconds), 
please see Supplementary Figure S6.

Figure 8. Model comparison (1–10 models).
Note: Model b0.1 included an overall intercept; Model b0.2 added varying intercepts for participants and stimulus items; Model b0.3 added a varying non- 
decision time parameter per participant; Model b1 included predictors for compatibility (compatible vs. incompatible); Model b2 included predictors for 
body size (slim vs. heavy); Model b3 included predictors for load (low vs. high); Model 4.1 included the interaction between compatibility and body size; 
Model 4.2 included the interaction between compatibility and load; Model 4.3 included the interaction between body size and load; Model b5 was the full 
model, and included the three-way interaction between compatibility, body size and load. Elpd_loo = estimate of the expected log pointwise predictive 
density; loo = leave-one-out estimated cross validation; error bars = standard error of the mean.
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this makes it di#cult to draw meaningful compari-
sons between Experiments 1 and 2.

Experiment 3

Our third experiment tested whether the presence of 
bodies would interfere with judgements about the 
valence of trait-implying words. As such, we 
addressed the same research question as Experiment 
2 with a task that more closely resembled the design 
used in Experiment 1. To this end, using the same 
body stimuli and trait words as both previous exper-
iments, participants were tasked with making 
speeded valence judgements (positive or negative) 
about visually presented words after being brie"y 
primed with slim or heavy bodies. Our predictions 
for how RTs would vary across compatibility and 
load conditions were identical to the two previous 
experiments. Specifically, we anticipated a RT interfer-
ence e!ect based on our compatibility factor, which 
would either increase or remain una!ected under 
high versus low cognitive load.

Method

Pre-registration and open science statement
As in our previous two experiments, our research 
question, hypotheses, planned analyses, and exclu-
sion criteria were pre-registered ( https://aspredicte-
d.org/bn2qq.pdf). Raw data, stimuli, and analysis 
code are available online on the open science frame-
work (https://osf.io/4en9f/). As data collection for our 
third experiment was carried out online, we antici-
pated a potentially high exclusion rate like Exper-
iment 2 (which was also carried out online). As a 
result, we collected data from 75 participants, to 
increase the likelihood of having at least 50 sets of 
useable data.

Participants
75 participants were recruited online via Prolific 
in exchange for payment (75 males, Mage = 30.90, 
SDage = 5.81). Following data pre-processing and 
exclusions, the final sample subjected to our analysis 
consisted of 70 participants.

Stimuli
All experimental stimuli were identical to those used 
in the previous two experiments.

Tasks
Overview. The experimental task for our third exper-
iment was created in PsychoPy (2022.2.1) (Peirce 
et al., 2019), and again required participants to cat-
egorize trait-implying words in the context of task- 
irrelevant bodies (see Figure 2.). As in previous 
experiments, participants were given the opportu-
nity to practice each task separately before practi-
cing both together. This time, all participants were 
required to complete the final dual-task practice 
block twice and were optionally allowed to com-
plete it a third time. The main experimental block 
consisted of 256 trials.

Trait categorization task. In the main task, partici-
pants were asked to judge whether a trait-implying 
word displayed on-screen was positively or negatively 
valenced, in the context of compatible and incompa-
tible body shapes. Each trial began with a fixation 
cross, displayed in the center of the screen for 
1000 ms. A slim or heavy body then appeared for 
750 ms, before the target trait word appeared on 
screen until the participant responded (up to a 
maximum of 2000ms). Participants were asked to 
press “K” for positive trait words and “M” for negative 
trait words, and to respond as quickly and accurately 
as possible. Trials were presented in a fully random-
ized order, and RTs were recorded.

Working memory manipulation. The secondary 
working memory task was identical to that of Exper-
iment 2.

Procedure
Participants recruited through Prolific were directed 
to the experiment hosted on Pavlovia. Consent and 
debrief forms were built into the experiment, which 
automatically redirected them back to Prolific and 
granted payment upon completion.

Design and data analysis
In line with our preregistration, and the analysis 
pipeline of the previous two experiments, we used 
Bayesian multi-level estimation to examine and 
draw inferences from our data. All models and par-
ameters are defined identically to those used in 
the previous two experiments. Regarding exclusions, 
we again sought to retain as much trial-level data as 
possible while removing any cases likely to re"ect 
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disengagement from the task. As a result, we 
applied a set of performance-based exclusion criteria 
similar to those used in the previous two exper-
iments, as well as attention checks which prevented 
disengaged participants from commencing the main 
experimental block of the task.

Attention checks appeared amongst a short set of 
general questions about the experiment, presented 
after the practice blocks, which were responded to 
on a 5-point likert scale. Two of these contained 
explicit instructions to select a specific response, 
and participants were allowed to proceed if they 
responded to at least one of these checks correctly. 
Following data collection, we evaluated performance 
on both the group and individual level to further 
filter out cases in line with our pre-registered criteria. 
Specifically, we excluded all trial-level responses 
with a RT of less than 20 ms, participants with 
valid responses to fewer than a quarter of the 
maximum possible trials for any cell of the design, 
and participants who appeared to have disengaged 
with the working memory task. To assess working 
memory responses, we identified participants who 
had achieved less than 55% accuracy in the working 
memory task and assessed their trial-by-trial response 
patterns. By visualizing their responses in chronologi-
cal order, we were able to identify and remove partici-
pants who had responded to the task with the same 
keypress for large portions of the experiment. Two 
participants were removed based on these criteria. 
We also excluded trials on which (a) for a given 
word stimulus, a given participant had responded in 
the opposite manner to 80% of other trials containing 
that word stimulus, and (b) the RT for that trial was 
more than one standard deviation above that partici-
pants mean RT. In total, our exclusion criteria removed 
5.46% of the total experimental data collected, includ-
ing whole data for 5 participants.

Results

Manipulation check
The e#cacy of our cognitive load manipulation was 
assessed in the same manner as our previous exper-
iments. The mean di!erence in accuracy scores 
between load conditions was 21.03% [18.89, 23.18], 
dz = 2.34 [1.90, 2.81]. As expected, accuracy was 
lower for high load (64.36%, [59.77, 82.16]), than low 
load (85.40%, [68.96, 88.63]). RT data also followed 

the expected pattern: mean di!erence = 72.60 ms 
[61.02, 84.15], dz = 1.50 [1.16, 1.85], with responses 
faster for low load (567.73 ms, [548.81, 586.65]) than 
high load (640.31 ms, [618.06, 662.57]). Again, these 
e!ects were consistent across all remaining levels of 
the design (see Supplementary Figures S8 and S9).

Main task
Reaction times for the main task are visualized in  
Figure 9. Visual inspection of the data does not indicate 
the predicted pattern of interference, but instead follows 
that found in Experiment 2. Responses were always 
fastest for traits implying health and extraversion, 
regardless of the compatibility of the body shape stimu-
lus. This pattern of results suggests that the results of 
Experiment 2 are unlikely to be due to the judgement 
dimension used by the task (deciding if a word is a trait 
or non-trait), as they translate to a judgement task 
which more closely resembles that used in Experiment 1.

Parameter estimates for the most complex model 
(Model 5), are shown in Figure 10 and Supplementary 
Table 1. Posterior distributions for most predictors 
overlap zero, except for load which indicates higher 
scores (i.e., longer reaction times) for high load. The 
compatibility*body size interaction term shows a 
similar trend to that seen in Experiment 2, again 
re"ecting the pattern of faster responses to positively 
valenced trait words.

Model comparison is visualized in Figure 11. Like 
before, the models containing only fixed and 
varying intercepts (Model b0.1 and b0.2) underper-
formed all subsequent models, most of which over-
lapped in terms of out-of-sample predictive accuracy.

General discussion

In the present work, we tested the extent to which 
links between body perception and trait inferences 
are automatic, in the sense of being una!ected by a 
demonstrably di#cult secondary task. Taken 
together, our findings support two novel con-
clusions. First, Experiment 1 shows that there are 
circumstances in which body shapes and trait con-
cepts can be relatively automatically linked, in the 
sense that such links remain una!ected by a 
demonstrably di#cult secondary task. These 
results suggest that linking trait concepts like “out-
going” and “lethargic” to visual body shape rep-
resentations relies only minimally on cognitive 
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control mechanisms within the central executive. 
On the other hand, Experiment 2 suggested that 
such resource-e#cient integration between body 
perception and trait inference knowledge is not 
obligatory and may not always occur in every 
context. Experiment 3 supported this interpretation 
by repeating the null e!ect of compatibility in a task 
which relied on similar judgements to Experiment 1, 
making it unlikely that the findings of Experiment 2 
can be explained by di!erences in the judgement 
dimension of the task. Overall, these findings 
update our understanding of the cognitive mechan-
isms that link di!erent aspects of social perception 
and cognition together.

The present work extends previous findings regard-
ing the relationship between perceptual and trait infer-
ential processes in social cognition. Specifically, 
previous behavioral and neuroimaging studies have 
demonstrated links between body shape and inference 
processing when participants explicitly form trait infer-
ences (Greven et al., 2016; Greven & Ramsey, 2017a,  
2017b; Hu et al., 2018; Wildman & Ramsey, 2021). 

Here we add that, in some circumstances, such links 
occur spontaneously and do not rely on resource- 
intensive executive control. Instead, they appear to 
be linked in a manner that is largely invariant to the 
presence of a demanding secondary task that taxes 
executive resources. In this sense, we provide evidence 
that such links are e#cient, and can therefore be con-
sidered more automatic with regards to this dimension 
of automaticity (Bargh, 1994).

On a theoretical level, evidence of automatic 
links between body shape and trait processing has 
implications for models of impression formation. 
Over and Cook (2018) present a model in which 
stereotypes and trait inferences rely on partially 
learned mappings between points or regions in dis-
tinct multidimensional spaces that encompass vari-
ation in visual (e.g., face/body space), and trait 
representations (trait space). Here, we argue that 
such mappings between body space and trait 
space largely bypass the central executive or only 
have a light exchange in terms of the consumption 
of resources.

Figure 9. Mean RT scores per participant across the sample, plotted by load and body size conditions. Error bars represent 95% confi-
dence intervals
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Constraints on generality

Our findings demonstrate that some, but not all, cir-
cumstances trigger spontaneous links between body 
shape and trait representations. The results of Exper-
iment 2 and 3 showed no indication of an interfer-
ence e!ect between bodies and traits, suggesting 
that such links were either not formed or were not 
measured by our design. Assuming that links were 
not formed at all, it is possible that the underlying 
process is directional such that spontaneous and 
resource-light links occur in one direction (between 
traits and bodies) but not the other (between 
bodies and traits). One possible theoretical interpret-
ation of this pattern is that the perception and 

evaluation of bodies necessarily involves the extrac-
tion of trait information, and therefore the pattern of 
interference found in Experiment 1, whereas evaluat-
ing trait concepts does not require the perceiver to 
generate body shape representations. This lack of 
symmetry makes sense from the perspective that 
traits can be considered attributes of body shapes, 
but not vice versa.

Limitations

While our main task in Experiment 1 required partici-
pants to discriminate between two distinct body 
sizes, the constrained presentation of bodies may 

Figure 10. Parameter estimates for each predictor within Model 5.
Note: compat = compatible vs. incompatible; body_size = slim vs. heavy; load = high vs. low; x-axis = log(RT); point estimate = median; error bars represent 
66% quantile intervals (thick black lines) and 95% quantile intervals (thin black lines). Interpretating these parameter estimates in terms of their original 
units is complex, as the shifted lognormal model is comprised of three components. To see estimates of these parameters in original units (milliseconds), 
please see Supplementary Figure S10.
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have limited the processing of body features beyond 
those directly subserving a decision based on overall 
body weight. As a result, our findings cannot directly 
support claims regarding the spontaneity of map-
pings between other dimensions of body shape and 
trait inference. Also, the format of catch trials in Exper-
iment 1 is likely to have directed some degree of 
attention to our trait stimuli, and it is possible that 
this had some in"uence on our findings.

The findings of Experiments 2 and 3 present a 
clear case that the e!ect found in Experiment 1 
does not transfer to a similar experimental context 
in which the roles of target and distractor are 
reversed. However, this may re"ect a directionality 
specific to the experimental task rather than the 
underlying cognitive processes which produce the 
e!ect. For example, the types of stimuli used 
across the experiments meant that judgements 
directed at body size concerned specific individual 
on-screen, whereas judgements of traits concerned 
either the linguistic function or a!ective qualities 
of broad concepts denoted by written words. There-
fore, it is possible that the asymmetry in outcomes 
between experiments is not based on an inherent 
directionality in the modalities and system of infor-
mation processing involved, but in the degree to 
which the task prompted person-judgements. 
Another account of the asymmetry in outcomes con-
cerns the modalities of stimuli and responses in the 
tasks, and the degree to which di!erent tasks 
required participants to “translate” information 

from one modality to another. For example, categor-
izing a body as “slim” may demand that shape infor-
mation is translated into a word which codes for 
that shape, exposing the process to competing 
information from other word-based information. In 
contrast, the tasks in Experiments 2 and 3 required 
participants to categorize words into word-based 
categories, which could have occurred without 
translating the bodies into word-based codes.
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